Journal of Computational Physié§4,579-613 (2001)

®
doi:10.1006/jcph.2001.6897, available online at http://www.idealibrary.col DE &l.

Shallow Water Model on a Modified
Icosahedral Geodesic Grid by Using
Spring Dynamics

Hirofumi Tomita* Motohiko Tsugawd; Masaki SatoH; and Koji Gotd

*Frontier Research System for Global Change, Integrated Modeling Research Program, 3173-25 Showame
Kanazawa-ku, Yokohama-city, Kanagawa, 236-0001, JapanjBi, Scientific Software Department,
Supercomputers Marketing Promotion Division 1-10, Nisshincho, Fuchu-city, Tokyo, 183-8501, Japan
E-mail: htomita@jamstec.go.jp

Received February 9, 2001; revised July 9, 2001

We develop a shallow water model on an icosahedral geodesic grid with several
grid modifications. Discretizations of differential operators in the equations are based
on the finite volume method, so that the global integrations of transported quantities
are numerically conserved. Ordinarily, the standard grid is obtained by recursive
grid division starting from the lowest order icosahedral grid. From the viewpoint of
numerical accuracy of operators, we propose to relocate the variable-defined grid
points from the standard positions to the gravitational centers of control volumes.
From the other viewpoint of numerical stability, we modify the standard grid con-
figuration by employing the spring dynamics, namely, the standard grid points are
connected by appropriate springs, which move grid points until the dynamical system
calms down. We find that the latter modification dramatically reduces the grid-noise
in the numerical integration of equations. The reason for this is that the geometrical
quantities of control volume such as its area and distortion of its shape exhibit the
monotonic distribution on the sphere. By the combination of the two modifications,
we can integrate the equations both with high accuracy and stability.

The performance of our model is examined by the standard test cases of shal-
low water model proposed by D. L. Williamsaet al. (1992,J. Comput. Phys.

102 211). To investigate the convergence properties against resolution, we per-
form simulations from grid division level 4 (approximatelys4d x 4.5° grids) to 7
(approximately (6° x 0.56° grids). The obtained results clearly indicate the ad-
vantage of use of our modified grid over the standard grid for the numerical accuracy
and stability. © 2001 Elsevier Science

Key Words:shallow water model; modified icosahedral grid; spring dynamics;
climate model.

579

0021-9991/01 $35.00
(© 2001 Elsevier Science
All rights reserved.



580 TOMITAET AL.

1. INTRODUCTION

The purpose of this paper is to propose a modified icosahedral grid configuration
to show excellent results from the time integration of the shallow water model using it.
this section, we attempt to provide some background to the present work by pointing
long-standing problems of grid models.

There are many applications in solving partial differential equation systems on a spt
ical geometry. One of them is in the geophysical fiuid dynamics, including the ocean &
atmosphere dynamics. For numerically solving the ocean dynamics, the grid method
been used because of existence of land mass. On the other hand, most of today’s a
spheric general circulation models employ the spectral method rather than the grid met
to represent the meteorological fields. This is because the spectral method has the
advantage of high numerical accuracy over the grid method.

Recently, it was pointed out that the spectral method may not be suitable to high resolu
simulations. One of the main reasons is the computational inefficiency of the Legen
transformation. In the representation of a field, the spherical harmonics are used as
basis functions, which consist of the associated Legendre functions and the trigonom:
functions. When a nonlinear term is estimated, the transform between the wavenun
domain and the physical space is required. The Legendre transformation takes very |
computational cost and the development of fast algorithm [1, 2] for it has not yet be
completed. The operation time of total transformation increas&(a3), wheren is the
total wavenumber. Another problem is related to the use of a massively parallel compt
The calculation of the nonlinear term by the spectral method essentially includes a proc
requiring all values on the global region. When the spectral method is employed ol
distributed-memory architecture, it requires extensive data movement among comp
nodes. Consequently, the ratio of communication to calculation becomes high and it me
the scalability of parallelization worse.

The grid method seems to be a good alternative to the spectral method. However, whel
simple latitude—longitude grid is used, another problem, the so-called pole problem, occ
The grid spacing near the poles becomes very small as the resolution becomes high.
causes avery severe limitation of the time interval for advection problem because of the (
(Courant—Friedrich—Lewy) condition [3]. There are some techniques to overcome the [
problem. One of them is the filtering technique [4, 5]. High wavenumber components n
the pole, which tend to appear as grid-scale noise, are removed explicitly. However, gen
consensus does not exist for what type of filter is the best and how filters should wc
Furthermore, it is difficult in most cases to explain physical meaning of filters themselv
As another remedy for the pole problem, the semi-Lagrangian method [6] is applied
advection scheme. Using this method, we can be free from the CFL limitation. Howev
the simple semi-Lagrangian method does not guarantee the conservation of mass. To e
it, some modifications may be required [7].

Inorder to radically overcome the pole problem, other types of grids, which are distribut
as homogeneously as possible on the sphere, are needed One of such grids is the icosa
grid. The idea of using icosahedral grids dates from 1960s. The original works in t
meteorological area were performed by Sadouehyal. [8] and Williamson [9]. They
solved the nondivergent barotropic equation by the finite difference method and exami
the performance of the icosahedral grid for the Rossby—Haurwitz wave problem [10] w
wavenumber 6. After those works, they extended the idea to primitive equations maoc
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[11, 12]. Masuda and Ohnishi [13] also developed the primitive equations model, in wh
mass is exactly conserved. The conservations of kinetic energy and potential enstroph
also considered in their model, though they are not complete. They also solved the Ros:
Haurwitz wave with several wavenumbers for their one-layer model (shallow water mods
Another attempt was made to solve the problem not only by the finite difference mett
but also by the finite element method. Cullen [14] developed the shallow water model
Cullen and Hall [15] extended it to the multilayer model.

Although many efforts had been made, as described above, the icosahedral grid me
as well as other grid methods were overwhelmed by the spectral method. This is bece
besides the great advantage of numerical accuracy of spectral method, the develop
of fast Fourier transformation [16] somewhat reduced the high calculation cost of |
transformation. However, as described previously, there still remains the problem cat
by the Legendre transformation; that is, it becomes computationally more inefficient as
horizontal resolution increases.

Recently, several icosahedral grid systems including new ideas have been reconsider
the planning of next-generation global models with very high horizontal resolution. Heik
and Randall [17, 18] developed a shallow water model on their modified icosahedral ¢
and tested the performance of their model by the standard test set proposed by Willian
et al.[19]. Their research group has extended it to a primitive equations model [20]. Stul
and Peltier [21] developed a nondivergent barotropic model. They demonstrated that the
of icosahedral grid is free from the pole problem by applying their model to the barotroj
instability problem near the pole. After that, they developed two shallow water modk
formulated by different forms of equations and compared the performances of these n
els [22]. Thuburn [23] independently developed a shallow water model, which has
conservation property for the potential vorticity.

Various grid construction methods using the icosahedron have been proposed. The me
by Sadournyet al. [8] is that each of the triangle sides of spherical icosahedron is divide
into n arcs and the grid points are connected along the geodesic line, wiereaumber
of division. The method by Williamson [9] is somewhat different from that of Sadourn
et al. [8]; after dividing the arcs of spherical icosahedron intgerpendicular lines are
drawn from the division points to the opposite sides and intersecting points are define
grid points. The grid construction method used by Cullen [14] and Cullen and Hall [15]
similar to that of Sadourngt al. [8] but grid lines are not geodesic in their method. Anothe
method is based on the recursive division technique. This method consists of the follow
procedures. Each side of the icosahedron whose vertices are on a unit sphere are proj
onto the sphere. By connecting the midpoints of the geodesic arcs, four subtriangles
generated from each triangle. By iterating such a process, grid refinement proceeds.
simple method is employed by many recent researchs [17, 18, 20—23]. Heikes and Rai
[17] modified the grid by twisting the icosahedral grid after first division to obtain th
geometrical symmetry over the equator.

Although the icosahedral grid has the desirable property for the construction of hi
resolution geophysical models, that is, the spherical homogeneity of grid size, there
remain some problems to overcome. One of the problems in the use of icosahedral
is the convergence problem of solution, that is, whether the numerical solution reason:
converges to the exact solution or not as the resolution increases. Actually, Stuhne
Peltier [22] reported the degradation of accuracy with increasing resolution in the stanc
test case 3 [19]. Heikes and Randall [17] also suggested that the result of the nonmod
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grid indicates a serious problem with regard to the accuracy of operators. They modil
the grid to minimize the error of numerical operators [18].

In this paper, we describe the shallow water model on an icosahedral grid with new ¢
modifications. In particular, from the viewpoint of the accuracy of operators, we propose
relocation of grid points to the gravitational centers of control volumes. Furthermore, \
propose the application of spring dynamics in the configuration of the modified icosahec
grid. This technique is expected to reduce the grid noise originated from the use of
Arakawa-A type grid. Combining these modifications, we perform numerical experimel
to demonstrate high numerical accuracy and stability. In Section 2, the governing equat
in this study are described. In Section 3, numerical implementation of the icosahedral ¢
to the governing equations is described. Differential operators in the governing equati
are discretized by the finite volume method to conserve the global integration of mass
Section 4, we describe our grid modification in detail and show the result of the operator t
which is similar to that used in Heikes and Randall [18]. In Section 5, the performance of ¢
shallow water model using the modified grid is examined by the standard test set propc
by Williamsonet al. [19] and also by several additional tests. We show the advanta
of using the grid modified by our techniques. Finally, the concluding remarks and futt
directions are described in Section 6.

2. GOVERNING EQUATIONS

There are two forms in writing the momentum equation of the shallow water syste
the vorticity-divergence form and the velocity form. In the vorticity-divergence form, th
vorticity and divergence, which are invariant against the rotation of coordinate beca
of scalar quantities, are used as prognostic variables. If this formula is used, we hav
solve the Poisson equation to obtain the velocity field from the vorticity and divergence.
numerically solve the Poisson equation, massive computational resources are required
in the calculation and in the communication. Stuhne and Peltier [21, 22] and Heikes :
Randall [17] reduced the computational cost by using the multigrid technique. On the ot
hand, the velocity vectoris directly solved in the velocity form. The velocity form would hav
some advantage over the vorticity-divergence form from the viewpoint of computatior
efficiency. For this reason, we employ the velocity form as the momentum equation. Stul
and Peltier showed that the physical result of the velocity form is comparable with that
the vorticity-divergence form.

CoOté [24] derived the three-dimensional form of the shallow water equations on t
sphere as

%+(V~V)V+fT(XV:—V(gh)—ui< 1)
ot a
8;1 + V- (h*v) =0, 2)

wherev denotes the velocity vector that has three components but it lies on the tanger
plane.h* andh denote the fluid depth and the surface height, respectivdly.dénotes the
height of the underlying mountaink,= h* + hs. t is time, V is gradient operator, ark

is vertical unit vectorf, g, anda are the Coriolis parameter, the gravitational acceleratior
and the radius of the earth, respectively. The last term of Eq. (1) represents the constra
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force so as to satisfy the relation kf v = 0. The second term on the left-hand side of
Eq. (1) is rewritten as

(v~V)v=(va)xv+V(L2V> 3)
R V- Va V-V
:;kXV—ak'i‘V(z)a (4)
where¢ is vertical vorticity, defined as
c=k-(Vxv). (5)

The detail derivation from Eg. (3) to Eq. (4) is described in Appendix A. From Egs. (1) al
(4), we can obtain the following vector invariant form:

Y ~ V-V
— 4+ ¢+ Hkxv=-V|(gh+ — ). (6)
ot 2

We use Eq. (6) instead of Eq. (1) as the momentum equation. Thus, Egs. (2) and (6) ar
system equations to be solved in this study.

3. NUMERICAL METHOD

3.1. Spatial Discretization

The refinement of grid is done by the recursive technique, similar to that of Stuhne «
Peltier [21, 22]. In this paper, the grid resolution obtained 4tly dividing operation is
called “glevell.” Hereafter, the grid thus determined will be called the STD-grid. Figure
shows the STD-grid with glevel 3. The target resolutions in this study are from gleve
(approximately &6° x 4.5° grids) to 7 (approximately.86° x 0.56° grids).

We have an aim to extend our model to a climate model. In a long time-integratic
such as climate simulation, conservations of quantities may be one of the most impor
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FIG. 1. The grid structure of the STD-grid with glevel 3.
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FIG. 2. Schematic figure of control volume in the STD-grid.

factors. For this reason, we employ the finite volume method for the discretization
differential operators. All variables are defined at the vertices of triangular grid elemer
This arrangement is something like the Arakawa-A type grid. The schematic figure
control volume is shown in Fig. 2. The points denoted by black circles are the vertic
of triangular grid elements, that is, variable-defined points. The points denoted by bl
triangles are the gravitational centers of triangular grid elements. The control volume for
point Py is the polygon constructed by connecting the gravitational centers of neighbori
triangular grid elements. The shape of control volume is hexagon except that it is penta
at only 12 points inherited from the original icosahedron.

In Egs. (2) and (6), three differential operators appear: gradient ope¥gtatigergence
operator ¥-), and curl operatorT<(- V x). The divergence operator is discretized by the
following method. If an arbitrary vectou at P, in Fig. 2 is known, vectou at G; is
calculated as

au(Po) + Bu(Pr) + yu(Py)

U(Gl) = Ol‘i‘ﬁ‘i‘]/ s (7)

wherew, 8, andy are the areas db; P, P,, G1 P, Py, andG, Py Py, respectively. Vectora

at the other point&; (i = 2 ~ 6) are calculated in the same manneh;lfindn; denote the
geodesic arc length @G, and the outward unit vector normal to this arc at the midpoin
of G1 Gy, the outward fluxf; crossing over the sidé;G; is estimated as

U(Gy) +U(Gy)

fi=b 5

ng. (8)
Other fluxesfi (i = 2 ~ 6) are also estimated in the same manner. From the Gauss theore
we can obtain the divergence wft the pointP, as

1 262 b UG + U(Girmodie)
- A( Po) — | 2 I

(9)

whereA(Py) is the area of control volume at the poirs.
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The curl operator and gradient operator are estimated in the similar manner of diverge
operator; line integral values along the border of the control volume are divided by the &
of control volume. I1fm; denotes the counterclockwise unit vector parallel to thezaG,
at the midpoint, we can obtain the vertical componer¥of u at the pointP, as

1 26: b, UG + U(Gatmodi 6 )

k-V x u(Py) = A - 5 .m. (10)
The gradient operator for an arbitrary varialean be calculated as
Q(G ) + q(G1+mod(| 6)
by 11
Vq(Po) = A(PO)Zb > n A(P)Z n. (1)

The second term of Eq. (11) is the correction term. If this term was neglected, the grad
vector of homogeneous field would not vanish because of the curvature of the sphel
surface.

To continue numerically stable runs, we may add the fourth-order hyperviscosity tern
the right-hand side of Eq. (6) as

LHS of (6) = RHS of (6) — vV, (12)

wherev is the viscosity coefficient. We discretize this term as follows. Gradient vectors
velocity component aG; (i = 1 ~ 6) are calculated from values at three surroundig
points as in Eq. (11), but the correction term is omitted. The Laplacid® & obtained
from divergence of the gradient vectors like Eq. (9). The discretization of the op&thtor
can be obtained by operating this process twice.

3.2. Temporal Scheme

All temporal integrations are performed explicitly. The third order Adams—Bashfor
method is used as the temporal scheme as

n-1
Y
45—
at

el
ot

\VARa veo1 { av "

n-2
: 13
At 12 } (13)

whereV = (h, v). This scheme requires the temporal tendencies at two past time leve
Therefore, for two steps from the initial time, the fourth-order Runge—Kutta scheme is us
The time intervalAt is limited by the CFL condition of the gravity wave speed.

3.3. Other Computational Techniques

The data structure of variables in programming is similar to that of Stuhne and Pel
[21]; 10 rectangular regions are constructed by connecting two neighboring triangles
the original icosahedron. Such a structure of 10 rectangular regions is defined as re
division level 0. We can divide regions by a scheme similar to that of grid division. Name
four subrectangles are generated from each rectangle by connecting the diagonal mid
points. If this process is repeatadtimes, we can obtain the region structure of regior
division leveln. All variables for each region can be described by a two-dimensional arr
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of Fortran. Data described above are designed in anticipation of the massively pare
computing based on vector processors.

In all calculations in this paper, the region division level is set to zero, so that the nu
ber of CPUs used is ten. The simulations are performed on a PC dusterhich the
communication between computer nodes is performed by using Message Passing Inte
(MPI).2

4. GRID MODIFICATION

Heikes and Randall [18] modified the grid structure to improve the accuracy of different
operators. In this section, in order to improve the accuracy of operators and to reduce
systematic grid noise, we propose a new modification method different from that of Heil
and Randall [18].

First, we consider the location of grid points as follows. Since operators at the grid po
Po (Fig. 2) are discretized by the finite volume method as Egs. (9)—(11), the values of
right-hand side in those equations represent average values in hexagonal or pentac
control volumes. On the other hand, the values of the left-hand side represent the valus
the grid pointPy. It is desirable that grid points should coincide with points whose value
represent average values in the control volumes. It is natural to consider that the p
representing the average value in the control volume should be the gravitational cente
the control volume. However, it is not always so in the original STD-grid. Therefore, w
move the location of the grid point to the gravitational center of the control volume.
schematic diagram of this process is shown in Fig. 3. We call the modified grid system
STD-GC-grid. This modified grid system provides the increase of accuracy for numeri
operators. The mathematical proof for this property is given in Appendix B. Furthermol
it provides consistency with the governing equations in that the other volume forces, s
as Coriolis force appearing in Eq. (6), are defined at the gravitational center of cont
volume.

As proposed by Heikes and Randall [18], we introduce the test functions,

a(r, 6) = sin(r), (14)
B(x, 6) = cogmx) cog(nv), (15)

wherei andé are longitude and latitude amd andn are arbitrary integers. Using these
functions, we define a vectoras

u=aVpg

=i —m%ﬁ;f) sin(x) sin(mi) | + j[—4n cos(nd) sin(nd) sin(A) cogma)], (16)

wherei andj are longitudinal and latitudinal unit vectors, respectively. We numerically ca
culateVv - u, k- (V x u),andVg by using Egs. (9)—(11), respectively. These are compare
with the exact solutions. Numerical errors are estimated by using one norm, two norm,

! See http://www.beowulf.org/.
2 See http://www.mpi-forum.org/.
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FIG. 3. Schematic figure of control volume in the STD-GC-grid.

infinity norm defined a
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wherex represents either a scalar or a vector arenotes the global-averaged operator;
x; denotes the exact value »f |, andl, norms represent globally averaged errors; land
norm represents the maximum error in the global region.

Table | shows the norms fon =1 andn =1 with glevel 5. For all norms and all opera-
tors, the results of the STD-GC-grid are improved in comparison with those of STD-gr
Especially, thd,, norms are much improved. This means that the local errors are mu
reduced by the gravitational-centered modification.

To examine the error distribution on the sphere, we perform the following test. So

rotation field {) whose rotation axis correspondsz@xis as shown in Fig. 1 is set to the
grid points and its divergencé&/(- v) is numerically solved. Sinc® -v = 0 analytically,
a numerical value ofV -v| indicates the difference from the exact solution. Figure 4
shows the distribution giv - v| for the STD-GC-grid with glevel 5. Relatively large errors
appear along the edge of triangles generated by the grid construction described in
previous section. In this case, the primary errors are on the lines of glevel 1 boundaries.
secondary errors are on the lines of glevel 2.

We define two geometrical quantities of control volume. One is its area denotéd by
and the other is the distortion of its shape, which is defined as

6 1/2
S= [{ Z(li _lmeaﬁz}/6‘| /lmean (18)
i=1
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TABLE |
Comparison of Accuracies of the Differential Operators
among the STD-Grid and the STD-GC Grid

Divergence operator

Iy [P loo
STD-grid 3580x 10°° 3.579x 1078 7.194x 1078
STD-GC-grid 2981x 10°° 2.753x 1078 2546 x 1073

Rotation operator

s l2 oo
STD-grid 2721x 10°° 2.936x 107 6.273x 107
STD-GC-grid 2169x 107 2.086x 107 5.568x 107

Gradient operator

Iy [P loo
STD-grid 2295x 10°° 2.764x 1078 8.882x 1072
STD-GC-grid 1830x 1072 1.861x 10°° 2.814x 1073

wherel; denotes the side length of control volume &rdis the reference length estimated
from the area of control volume, which is defined as

2 1/2
[ mean = (Vg A) . (19)

Figures 4b and 4c show the distributions Afand S. As shown in Fig. 4b and 4c, the
recursive method of grid construction leads to a fractal structure in regard to the geometr
guantities of control volume; the differences from the mean values originate from the fi
division of grid construction. These differences are inherited to the next refined grid syst
at the second division. Thus, the grid system inherits the geometrical quantities from
previous generation. Comparing with Fig. 4a, it is seen that the region where a large e
of numerical solution exists strongly corresponds to the region where the gradients of ¢
and distortion of control volume are steep. The error patteivof v| is similar to those

of area and distortion, so that it may cause the generation of systematic grid noise at
temporal evolution of governing equations.

We can easily guess from the above discussion that if we construct a grid systen
which geometrical quantities vary monotonically on the sphere, the error distribution
this grid system would be also monotonic so that the grid noise is reduced. To const
such a grid system, we propose an application of spring dynamics as follows. After the ¢
is constructed by the recursive method, grid points are connected by appropriate spri
Figure 5 shows the schematic figure of this process. The mathematical expression of
dynamic system can be described as

6
> _k(di —d)e —awp = M—" (20)
i=1

Wo = —— (21)
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(a)

FIG. 4. (a) Error distribution of the divergence operator, (b) distribution of area of control volume, ar
(c) distribution of distortion of control volume for the STD-GC-grid. The values increase as color order of re
green, and blue.

wherek is spring constant; andd are the length of ar®, P, and the length of spring
without imposed force, respectively, is unit vector in the direction fron®, to P, on the
tangential plain aPy, « is the frictional constantyg is the velocity vector aPy, M is an
arbitrarily defined mass, ang is the position vector oPy. When the system calms down
to the static balancey, = 0 anddw/dt = 0, so that the following relation is satisfied:

6

S (@ —dye =0. (22)

i=1

Thus, the grid can be obtained only by tuntﬂglvhich is formulated using the grid division
levell as

2ra

10x 2I-1’ (23)

d=p
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FIG. 5. Schematic figure of connection of spring in the modification using spring dynamics.

where 8 is the tuning parameter. The numerator and denominator on right-hand s
of Eq. (23) represent the length of the equator and the number of grid points on
equator. In this study, we s@ = 0.4. By using the STD-grid as the initial condition,
Egs. (20) and (21) are numerically solved until the balance equation (22) is satisfi
After that, control volumes are defined and grid points are moved to the gravitatior
centers of the control volumes in the same way as STD-GC-grid (Fig. 3). We call t
grid the SPR-GC-grid. Figure 6 shows the SPR-GC-grid with glevel 3. Comparing t
SPR-GC-grid (Fig. 6) with the STD-grid (Fig. 1), grid lines of the SPR-GC-grid are mol
smoothly curved than those of STD-grid, especially, near the 12 singular points. Inste
the grid intervals of the SPR-GC-grid near the singular points are a little smaller th
those of STD-grid. In Appendix C, we discuss this problem and propose a countermea:
to it.
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FIG. 6. The grid structure of the SPR-GC-grid with glevel 3.
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Figure 7 shows the geometrical quantities and the error of divergence. The distributi
of area and distortion of control volume show monotonic variations on the sphere. Cor
quently, the error distribution has also monotonicity and the noise-like error as showr
Fig. 4a disappears.

In order to check the convergence property of the SPR-GC-grid as increasing the
olution, we perform the operator test wf3, V - u, andk - (V x u) using Eqgs. (14)—(16)
for higher modes ofn = 3 andn = 3. The convergences of andl,, norms defined by
Eq. (17) for each of operators are shown in Fig. 8. For the STD-gridl,therms are
reduced by a factor of four with each increment of glevel. In this sdas&rms for the
STD-grid vanish with the second order. However, the convergence speedslfgmbems
become slower for higher resolution. For example, for the STD-gg;jd} -(V x u)) be-
comes only half with the increment of glevel as shown in Fig. 8c. On the other har
for the SPR-GC-grid, both, andl,, norms are reduced by a factor of four for all the
operators.

5. NUMERICAL RESULTS

The suite of test cases proposed by Williamsoml. [19] has been used to investigate
the performance of our shallow water model. There are seven cases in the suite. Our re
of test case 1 and 4 are similar to those of Heikes and Randall's model [17]. We desc
the results of test case 2, 3, 5, 6, and 7 in the following.

5.1. Test Case 2: Global Steady State Nonlinear Zonal Geostrophic Flow

This test case has a steady state solution of the nonlinear shallow water equations.
initial condition of the velocity field represents a solid body rotation, and the height field
in the geostrophic balance. The rotation axis of solid rotation can be chosen in any direc
in the spherical coordinate and the Coriolis parameter becomes a function of longitude
latitude as

f = 2Q(—cosA cosh sina + sind cosa), (24)

wherec is angle between the rotation axis and the coordinate axis. Williamtsah[19]
suggest that tests should run with= 0.0, 0.05, /2, andxr/2 — 0.05. We set the same
parametersg andghg as described in Egs. (90)—(96) in Williamsetal.[19]. The numbers
of time steps are set as 593, 1185, 2370, and 4740 in simulations for glevel 4, 5, 6, ar
respectively. The corresponding time intervals are similarly equal to 728, 364, 182, anc
s. All the cases are run without hyperviscosity.

Figure 9a shows the temporal historiesl gfth) norm for o = 0 using the STD-grid,
the STD-GC-grid, and the SPR-GC-grid. The(h) norm of the STD-grid is larger than
the others even in the first stage and it becomes much larger as time goes on. Th
because the operators in the case of the STD-grid are less accurate than those in the
grids. Thel(h) norm of the STD-GC-grid has a similar history to that of the SPR-GC
grid until t = 1 day, but it becomes large aftee= 1 day. The reason why the result of
the STD-GC-grid becomes worse is that, although the discretized operators of the S
GC-grid are more accurate than those of the STD-grid, the discretized operators incl
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(a)

{b) (c)

FIG. 7. (a) Error distribution of the divergence operator, (b) distribution of area of control volume, an
(c) distribution of distortion of control volume for the SPR-GC-grid. The contour intervals are same as those
Fig. 4.

the systematic errors as shown in Fig. 4a so that a small grid noise, which occurs initi
is amplified and finally the whole field is contaminated by the noise. Although there
a small noise also in the case of the SPR-GC-grid, it is not amplified. Consequently,

| (h) norm of the SPR-GC-grid is kept at almost the same values of the initial 1 day duri
5 days.

Four runs of different for glevel 5 are performed using the SPR-GC-grid. The rotatiol
axis intersects the vertices of the major spherical triangles for the case-df, while the
rotation axis penetrates the center of major spherical triangles for the case 6f/2. The
results shown in Fig. 9b indicate little difference among the four cases. We may say t
this is due to the isotropy of grid structure.

Figure 10 shows the dependence on the resolution using the SPR-GC-grib(fHhe
norm is reduced by a factor of four with each increase in grid division level.l Ilile)
norm also is reduced by a factor of four. The results for the velocity fieltbo indicates
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FIG. 8. Convergence properties of error norms for= 3 andn = 3. (a) Divergence operator, (b) rotation
operator, and (c) gradient operator.

similar convergence. Thus, for the prognostic variables, the second-order accuracy ce
kept in both the global and the local sense.

The results of, (h) for glevel 5 andx = 0 are shown in the Fig. 8 of Heikes and Randall
[17]and Fig. 2 of Stuhne and Peltier [22]. Thg(h) norm of the former maintains a value of
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1 ~ 2 x 10~* with some fluctuations. That of the latter is about 0~4, which is the best
value in their runs (vsw5). As shown in Fig. 10b, dw(h) has a value around:2 1074,

so that our value is comparable to that of Heikes and Randall [17] and is somewhat be
than that of Stuhne and Peltier [22].

Inthe discretized system equations, there are two factors which generate higher waver
ber components. One is the nonlinear effect and the other is associated with discret
schemes. If the nonlinear effect is dominant, the viscosity term should be added to dissi
the high wavenumber components. This test case is free from the nonlinear effect, bec
the exact solution is steady. In this sense, we can regard this test case as the test to me
how long the model runs without viscosity. As previously shown in Fig. 9a, the result usi
the SPR-GC-grid indicates good accuracy and high stability. Although the originally pr
posed integration time of test case 2 is 5 days, we extend the integration time to 3 mor
Figure 11 shows the temporal historieslgf(h) norm for the SPR-GC-grid with glevel
6 and 7. The level of values bf,(h) remains unchanged from the beginning to 90 days
We may say that the use of the SPR-GC-grid is the best choice in grid structures from
viewpoint of numerical stability.

(a)
1.0E-02 . —
STD-grid
STD-GC-grid
SPR-GC-grid -~
1.0E-03
1.0B-04 |
1.0E-05
0 1 2 3 4 5
t[days]
(b)
1.0E-03
1.0E-04 P Yf-——
1.0E-05 -
0 1 2 3 4 5
t[days]

FIG. 9. The temporal variation df,,(h) norm for test case 2 (glevel 5). (a) Comparison between the gric
systems forx = 0 and (b) comparison between different values é6r the SPR-GC-grid.
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5.2. Test Case 3: Steady State Nonlinear Zonal Geostrophic
Flow with Compact Support

This test case was designed by Browngigal. [25]. The velocity field is a zonal flow
as in test case 2, but the nonzero velocity region is confined in a range of latitude, tha

1.0E-04

1.0E-05

glevel 6 ——
glevel 7 wmmamen

1.0E-06 ;
0 10 20 30 40 50 60 70 80 90

t[days]

FIG. 11. The temporal variation df,, (h) norm for the 90 days integration of test case 2 witk: 0.
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S
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FIG.12. Convergence properties of error norms by the grid refinement test for test casex3=withi 3. Solid
thick line represents the ideal quadratic convergence.

the jet flows in the midlatitude. The height field is in the geostrophic balance. The ex
solution is steady. The initial conditions used are given in Egs. (101)—(115) of Williams
et al. [19]. The angle between rotation axis and coordinate axis is set-a® anda =

7/3.
;:Qf( iy “ <§7/2§:
= D — —
= A=
—— W N\ —
——— ~—————

FIG. 13. Height field at the 15 days for the SPR-GC-grid with glevel 6.
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FIG. 14. Height field differences from the spectral result of T-213 for test case 5. Contour interval is 5 |
Solid lines and shaded lines indicate the positive and negative, respectively.

Williamsonet al.[19] proposed a mesh convergence testfet 7 /3. Stuhne and Peltier
[22] reported the degradation of accuracy with an increase in grid division level in this t
case. Figure 3 of their paper [22] shows the increase of values for several error norn
the grid is refined from glevel 5 to 7. Heikes and Randall [17] reported that the twig102
(glevel 5) results are quite a bit better than those of twig02562 (glevel 4). Their Fig
shows that the norms of twig10242 are only half of those of twig02562, indicating tl
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FIG. 15. The temporal variations of error norms for test case 5.

numerical solution is converging to the exact solution with first-order accuracy. Stuh
and Peltier [22] noted that the degradation is the result of the combined contribution
spatial and temporal truncation errors, computational noise, numerical imprecision,
other factors.

In order to investigate the convergence property of our model, we perform the simulatit
from glevel 4 up to 8 using the SPR-GC-grid. Values of the norms defined in Eq. (LA at
5 days are plotted in Fig. 12, where the thick solid line indicates the quadratic converger
We can see that all the norms become smaller along the ideal line as the resolution incre
These results would be reasonable, because the accuracies of all the operators are
second order, as previously shown in Fig. 8.

5.3. Test Case 5: Zonal Flow over an Isolated Mountain

Test case 5 has a dynamic evolution of flow. The initial condition is similar to that i
test case 2, that is, the velocity field is the solid body rotation and the height field is in 1
geostrophic balance. The reference depth and the maximum flow speed ait® setz360
m andug = 20 m/s, respectively. A mountain whose height is 2000 m is located°at, 30
90°W. The detail formulation of the mountain is shown in Eq. (134) in Williamsbal.
[19]. Total integration time is 15 days.

We perform this test case with our icosahedral model using the SPR-GC-grid withc
hyperviscosity. The time intervals are setAb = 480, 240, 120, and 60 s for glevel 4, 5,
6, and 7, respectively. Figure 13 shows the snapshbtaif15 days with glevel 6. In this
figure, contour lines are plotted on all of triangular elements using the raw data distribu
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FIG. 16. Convergence properties of error norms of spectral results for test case 3 at 15 days. The T-
spectral solution is employed as the reference solution.

on the icosahedral grid points. In spite of the absence of viscosity, the grid noise does
appear so that the contour lines are smoothly curved.

Since there is no analytic solution in this test case, a reference solution is obtained f
integration of our spectral modelith T-213. For this spectral calculation, the vorticity-
divergence form is used as the equation system. The vorticity, divergence, and geopote
are explicitly solved, and velocity is solved by Laplacian inversion of vorticity and dive
gence. The temporal evolution is performed using the fourth-order Runge—Kutta metl
and the time interval is set as 7364 time steps for a one-day simulation.

We process the spectral results as follows. Since we have the spectral coefficient
the simulations, we construct the data of spectral method on the icosahedral grid pc
by using the coefficients of spherical harmonics. Subtracting the icosahedral result fi
them, we can obtain the differences between the two data sets. Figure 14 shows the h
field differences from the T-213 spectral model result at 15 days for glevel 4 up to
7. The large phase errors which appear in the lowest resolution become reduced
increasing resolution. There are some noise-like errors around the mountain for glev
and 6. As described previously, this test case is performed without hyperviscosity, so
high wavenumber components generated by the nonlinear effect, which is large neau
mountain, are not eliminated. The noise-like errors may be caused by the nonlinear eff

3 Several subroutines in ispack-0.5 [26] are used.
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FIG. 17. Dissipation rates of total energy and potential enstrophy for test case 5.

The temporal evolutions of thgandl ., norms ofh andv are shown in Fig. 15. The globally
averaged errork are reduced with increasing resolution as shown in Figs. 15a and 1°
The local errord,, are also reduced as shown in Figs. 15b and 15d. Although there is
little degradation of accuracy fd,(h) from glevel 5 to 6, the value df,(h) decreases
again from glevel 6 to 7.

We have employed the T-213 spectral solution as the reference solution and assumec
it represents the “true” solution. However, it should be noted that the reference solut
may not exactly be the “true” solution. To examine this issue, using our spectral moc
we perform simulations for spectral truncation 42, 63, 106, 213, and 426. Figure 16 shc
the error norms against the T-426 result at 15 days. Jakob-@har27] also performed
test case 5 simulations for T-42 and T-63 and showed the error norms against T-213.
norms for T-42 and T-63 are somewhat smaller than their norms. The convergence spet
norms between T-42 and T-63 by our model is comparable to that of their model. As shc
in Fig. 16, the convergence speed is not as high as expected from the spectral acct
criterion, even in higher resolutions. Several reasons for this can be speculated. On
the main reasons would be that the shape of mountain is not differentiable, as pointed
by Jakob-Chieret al.[27]. Figure 16 suggests that the T-213 result, that is, our referent
solution, includes atleast errors of the order shown against the “true” solution. In compari:
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TABLE Il
The Hyper Viscosity Coefficients Used in Test Case 5

Viscosity coefficienty [m?*/s] E-folding time: T [h]
1.39681x 10" 0.5
6.98406x 10 1
3.49203x 10* 2
1.74601x 10 4
8.73007x 10* 8
4.36503x 10" 16
2.18251x 10© 32

with the icosahedral results of glevel 7 (Fig. 15), the norm errors of T-213 is one-tenth
those errors. So, we can say that the solution of T-213 can be treated as a reference so
until glevel 7. However, its validity may be reduced as compared to icosahedral results v
much higher resolutions.

One of the purposes in test case 5 is to investigate the global conservation pro
ties of models. Since our model is based on the finite volume representationhtriass
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FIG. 18. Temporal variations oATE for the 90 days simulations. (a) the STD-GC-grid and (b) the SPR-GC
grid.
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FIG. 19. Height field for the 90 days simulations wiil; = 32 hours using the SPR-GC-grid.

perfectly conserved. In our model, the vorticityand divergencé(=V - v) are not prog-
nostic variables. If we define these quantities diagnostically as Egs. (9) and (10), they
also conserved.

We check the conservation of total enefifyand potential enstrophpE defined as

1 1 * 1 2 2

1 1
:W//Zh*(ur f)?do, (26)

whereE o denotes the potential energy in the initial state dadlenotes the infinitesimal
element of area. The definition of total energy in Eq. (25) is the same as that of Stul
and Peltier [22] but different from that of Williamsaat al.[19]. The difference rates from
initial values forTE andPE are defined as

aTE= B TR0 (27)
TE

_ PE-PE
APE = g (28)
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FIG. 20. Height field for test case 6 at the 14 days. Contour intervals are 200 m.

whereTEy andPEy are the initial values. Figure 17 shows the temporal variatioh& O]
and|APE|. The rapid decreases near 2 days|6TE| and near 10 days fdrAPE| are
due to the change of sign &TE and APE. The differences decrease in the quadratic
sense as the increment of glevel. Thus, conservative quantities also have the second-
accuracy.

A remarkable performance using the SPR-GC-grid is demonstrated in the long-ti
simulation based on test case 5. The total simulation time is 90 days and the numbe
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FIG. 21. The temporal variations of error norms for test case 6.

glevel is 6. Since the nonlinear term generates high wavenumber components in this ¢
the fourth-order hyperviscosity term defined as Eq. (12) is added to the momentum ec
tion. The used coefficients are shown in Table Il, wh&semeans the e-folding time for
waves of two-grid-scale wavelength. Figure 18a shows the temporal variation for dis
pation of TE defined as Eqg. (27) using the STD-GC-grid. Total energiegfpe 0.5, 1,
and 2 hours smoothly decay. However, the variationTigr= 4 hours includes a small
fluctuation. It is suggested from investigation of height field that the small fluctuation
temporal history oATE is caused by the amplifying nonphysical grid noise, which inter
mittently appears during simulation times. Figure 18b shows the same figure as Fig.
but using the SPR-GC-grid. For all of simulations using this grid system, total energi
decay smoothly. The height fields fog = 32 hours are shown in Fig. 19. In Fig. 18b, the
spectral model result of T-106 faks = 4 hours is also shown. The history of its decay aftel
50 days is in good agreement with that of the icosahedral result of the SPR-GC-grid for
same viscosity.

5.4. Test Case 6: Rossby—Haurwitz Wave

The Rossby—Haurwitz wave has been used for performance check of models sinc
was proposed by Phillips [10]. It is analytic solution of the nondivergent barotropic equ
tion. Historically, this wave was used for nondivergent barotropic models based on-
icosahedral grid at the first stage [9, 8]. Williamsenal. [19] introduced the Rossby—
Haurwitz wave as one of the standard tests for shallow water models with a simple se
parameters.
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(a) glevel 5

(b) glevel 6

(c) glevel 7

FIG. 22. Height field (left) and difference height field (right) from the T-213 spectral results for test case 7
5 days. The viewpoint of these figures are at the north pole. Contour intervals are 100 m for left figures and ?
for right figures.

Since the shallow water equations include gravity waves, itis not guaranteed for the ini
balance to remain during temporal evolution. The stability of zonal waves in the shall
water equations, which is well discussed in Hoskins [28] and Thuburn and Li [29], is r
concerned here. In this paper, we deal with T-213 spectral results as the reference solu
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as in test case 5. The initial condition is the same as Eqgs. (141)—(149) in Williaehabn
[19]. We perform simulations of this test case for glevel 5, 6, and 7 without viscosity. Tl
time intervals are the same as those of test case 5.

Figure 20 shows the height fields using the SPR-GC-grid at 14 days. The equatc
symmetry is broken in the field of glevel 5 (Fig. 20a). This is obviously due to the asymme!
of the grid structure. Heikes and Randall [17] proposed the twisted icosahedral grid
avoid these errors. However, as resolution increases, the asymmetric errors become ¢
(Fig. 20b and 20c). Thie andl,, norms against the reference solution are shown in Fig. 2’
Convergence properties are better than those of test case 5 (Fig. 15). The reason fo
would be that high wavenumber components are not large in test case 6.

5.5. Test Case 7: Analyzed 500 mb Height and Wind Field Initial Conditions

The final test case is to imitate real atmospheric motions. The initial condition is bas
on data at 0000 GMT 21 December 1978 [30]. We perform simulations in this case us
the SPR-GC-grid from glevel 5 to 7. The hyperviscosity coefficients are set so that
folding time of decay for the two-grid-scale wave corresponds to 4 hours, thatdis,
2.7936x 10, 1.7460x 10", and 10913 x 10 for glevel 5, 6, and 7, respectively. The
time intervals are the same as those of test case 5 or 6.

Figure 22 shows the height and velocity fields at 5 days and the differences from
T-213 spectral model result. Our solutions for glevel 5 and 6 shown in Fig. 22a and Z
are in good agreement with those of Heikes and Randall [18] (see Figs. 19 and 20 in [1
In glevel 7 (Fig. 22c), there is better correspondence to the T-213 spectral solution. Tt
the icosahedral model solution is well converged to the reference solution in the cast
realistic flows as well.

6. CONCLUSIONS

We develop a new shallow water model on the modified icosahedral grid. The vec
invariant form is employed as the momentum equation. The discretization of equation
based on the finite volume method. A modification of the grid is that the locations of gt
points are moved to the gravitational centers of the control volumes. By this modification,
accuracy of differential operators is improved. In order to reduce the systematic grid no|
the grid system is also modified by solving the spring dynamics. By the combination
the above two modifications, we can obtain the ideal convergences for numerical opera
as shown in Fig. 8 and the grid noise is well reduced as demonstrated by the long til
simulation for the zonal geostrophic problem (test case 2 of [19]). Using the modifi
grid, the excellent performances are also obtained for the other test cases. Apparently
modification of grid by spring dynamics and gravitational-centered relocation is a fine st
both for numerical accuracy and for numerical stability.

Our goal is the development of the high resolution climate model which couples t
atmospheric and oceanic general circulation models to help us understand the mecha
of global changes such as the global warming. Especially, we intend that the resolut
eventually increases up to cloud resolving scale (10 km or less) for the atmospheric mo
The development of the shallow water model in this study is the first step to the goal.
showed that if the icosahedral grid is employed as the horizontal grid system, there wc
be no problem on the numerical accuracy of operators in the high resolution calculati
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From the viewpoint of computational efficiency, we are now further developing this moc
for implementations in massively parallel computers and investigating the computatio
efficiency in comparison with the spectral method.

APPENDIX A

In this section, we describe how to obtain Eq. (4) from Eq. (3). An arbitrary tangent
plane on the sphere is considered. We pw-gnz Cartesian coordinate in whictyy planes
are parallel to the tangential plane and the origin corresponds to the contact point betv
the spherical surface and the planés directed to the vertical.

At the origin, the relations are satisfied,

au 0

Ty (A1)
dz 0z

where,u, v, andw arex-, y-, andz-components of velocity vector. Using Eq. (A.1), the
vorticity vectorw at the origin can be written as

(aw ow dv au)
w=VxvVv= — .

— e — — (A.2)
ay 99X 0dx 9y

Thex- andy-components ok do not vanish because of curvature of the spherical surfac
From the constraint that the normal component of velocity vector to the spherical surf;
equals to zero, we can obtain the horizontal derivatives af the origin as

Jw v Jw

u
— =, — =——. A.3
ay a ax a A3
We can interpret Egs. (A.2) and (A.3) to the following formulation:
Nooa W

This vector formulation is true at any point on the spherical surface. From Eq. (A.4), \
can obtain the following equation:

wxv:{kxv—%k. (A.5)

Equation (4) is derived from Eq. (3) with Eq. (A.5).

APPENDIX B

In Section 4, we see the increase of computational accuracy by the move of the loca
of grid point to the gravitational center of control volume. In this section, the mathematic
proof of this fact is given. First, consider an arbitrary triangle on a flat plane and let t
positions of vertices bex(, y1), (X2, ¥2), and ks, y3) in counterclockwise order (Fig. 23a).
We define the quadratic functian(x, y) as

u(x,y) = Ax> 4+ By’ + Cxy+ Dx + Ey + F, (B.1)
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> X
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> X

FIG. 23. (a) Schematic figure of a triangle on a flat plane. (b) That of a polygon.

whereA, B, C, D, E, andF are constant. The exact solution of gradientia$ obtained
from Eq. (B.1) as

(B.2)

D+ 2Ax+C
[Vul(x, y) = ( y).

E + Cx+ 2By

Integratingu along three sides of triangles, we can obtain an estimation vaMa of this
triangle as

1 1 "2 3 1
[Vu]c = A %un dl = A [/ Un12d|12+/ Un23d|23+/ Un31d|31:| , (B.3)
. 1 2 3

wheren anddl denote the normal vector to the side and the infinitesimal line elemer
Subscriptj (i # j) means value along sidefrom the pointi to the pointj. Ais the area
of the triangle. The equation of lirgis written as

Yj

A B PSR
y—y.—xj_xi(x Xi). (B.4)
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The terms;j, dij, and A can be expressed as

1 ( Yi — i )
ni = , (B.5)
) VX = X)Z+ (Y] — ¥)Z \ —(Xj — %)
%2 ERVAY
dlj = V(Xj = X)Z + ¥? g (B.6)
Xj — Xi
1
= é(lez + X2Y3 + X3y1 — X3Y2 — X2Y1 — X1Y3) (B.7)
Substituting Egs. (B.4)—(B.7) to Eq. (B.3), we can obtain

VU, = (D+2A(x1+X2+X3)/3+C(Y1+y2+y3)/3) (B.8)

T \E+Cu+X%+X)/3+2B(y1 + Y2+ ¥a)/3 ) '

From Egs. (B.2) and (B.8), we can say that the estimation valug.[corresponds to the
exact solution Yu]; at the gravitational center of triangle.

We can prove that this is true for an arbitrary polygon as follows. Again, the quadra
functionu(x, y) is defined as Eq. (B.1). As shown in Fig. 23b,rath polygon is divided
into n triangles. The gravitational center and area of the trianglk6- k + 1 are denoted

by 0k = (Ikx, Oky) and Ay, respectively. In a similar way to Eq. (B.3), the gradienuain
the polygon is estimated as

2 3 1
|;/ Un12d|12+/ un23dI23+~--+/ Uﬂn1d|n1]
2 n
2 0
K Un01d|01+/ Un12d|12+/ Un20d|20)
1 2
3 0
+< Un02d|02+/ Un23d|23+/ Un30d|30>+ ~~~~~~
2 3
1 0
( unOndIOn / Uy dlng + / unmdllo)]
n 1
=[% undl+7{ undI+~-~+% undl}, (B.9)
2 012 023 Onl

where§0ij denotes the line integral around the triangig Blote that the second line in
Eqg. (B.9) is derived from the first line with the relationmf = —nj; . From the conclusion

in the previous paragraph, we can write the line integral around the trianrgle-0k + 1
as

[Vule =

> >

7{ undl = AJVuli(go. (B.10)
Okk+1

Substituting Eqg. (B.10) into Eq. (B.9), we can obtain the following formulation for th
estimation value:

[Vule =Y A[Vuli@) / Y A. (B.11)
i=1
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Using Eq. (B.2), Eqg. (B.11) can be written as

D 4 2AG, + CGy

[Vu]c = (
E +CGy + 2BGy

) = [VUul{(G), (B.12)
whereG = (Gx, Gy) = GOl A Gix/D AL Y ATy /> 1 A). The vectolG repre-
sents the gravitational center of theth polygon. Thus, we can say that for an arbitrary
polygon, the estimation valu&]. corresponds to the exact solutioviJ]; at its gravita-
tional center.

Now, let the functioru be a general function and the origin of coordinates be near tf
central point of then-th polygon. Note that the origin does not need to correspond to tt
gravitational center. We can expaundo the Taylor series around the origin as

ux, y) =0(x, y) +e,
au
0X

2 , 9%
X+ a2
o ay

X +azu
o YT o

X+ u y+ 2
o Y lo ayay
wheree represents the residual of which the leading terms are cubic polynomials.

Differentiating Eq. (B.13), we can obtain

y?, (B.13)
(e}

ax, y) =ulo +

[Vule(r) = [VO]e(r) + [Ve]e(r). (B.14)
This equation can be rewritten as
[Vule(r) = [VO](G) + I(r — G) + [Ve](r), (B.15)

wherelJ is the following matrix:

aiu| 92u |

ax2 10 axay 1O

J=2 2. (B.16)
9%u ‘ 3%u
axay 10 ay?

On the other hand, by the same way as Eqg. (B.9), the estimation value has the follow
form:

[Vule = [VO]e + [Ve]e. (B.17)

Because the functioti(x, y) is a quadratic function, the relation o¥{i] = [V0];(G) is
satisfied. This leads to the error owing to the estimation:

[Vule — [VuU]i(r) = [Ve]e — [Veli(r) = I(r — G). (B.18)

Since the leading terms efis cubic polynomials, the first term on the right-hand side ha:
the magnitude of order akd?, whereAd denotes the reference length, such/as. The
second term also has the magnitude of ordexdf, because components 6#4]; (r) itself
contain quadratic polynomials. The third term, however, does not vanish in the second-o
sense, because— G| ~ O(Ad). Itis obvious that this term should be zero only i G.
Thus, we can conclude that for the gradient operator the relocation of the grid point to
gravitational center of control volume provides the increase of accuracy. Also, as for:
divergence operator and the curl operator, we can show by the similar way that the san
true.
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TABLE 11l
Comparison of the Ratios of the Maximum Grid Interval to the Minimum
Grid Interval among the Grid Systems in This Study

glevel STD-grid STD-GC-grid SPR-GC-grid SPR-NL-GC-grid
3 1.311 1.311 1.508 1.235
4 1.331 1.331 1.663 1.256
5 1.336 1.336 1.824 1.272
6 1.337 1.337 1.990 1.285
7 1.337 1.337 2.156 1.295
APPENDIX C

In the text, we show the advantage of using the SPR-GC-grid both for the numeri
accuracy and for the numerical stability. However, the grid modification causes a triv
problem concerning the homogeneity of grid. Table Il shows the ratios of maximum g
interval to minimum grid interval for the STD-grid, the STD-GC-grid, and the SPR-GC
grid. The local grid interval is estimated by the square root of the area of control volun
The values of the STD-grid and the STD-GC-grid are the same because of the same co
volumes. They are converging to the value of 1.337 as the increment of glevel, so
homogeneity of the grid can be maintained. On the other hand, the value of the SPR-
grid gradually increases as the increment of glevel, though its increase is small. We
remedy this defect by replacing the linear spring formula in Eqg. (20) by an appropri
nonlinear spring formula. For example, insteaddoin Eq. (20), we can formulate the
length of spring as

- 1A A
d._Zd(A0+Ai>, (C.2)
where A denotes the global average of area of control volumeAndenotes the area at
point P;. Such an inclusion of feedback of area in dynamics makes the grid homogenec
We call this grid system the SPR-NL-GC-grid. The ratios of maximum grid interval to mi
imum grid interval aj3 = 0.8, are shown in Table Ill, where the SPR-NL-GC-grid is more
homogeneous than the STD-grid and the STD-GC-grid. Of course, since the geomet
guantities are relatively monotonic also in the SPR-NL-GC-grid, the noise-reduction c
be expected.
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