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We develop a shallow water model on an icosahedral geodesic grid with several
grid modifications. Discretizations of differential operators in the equations are based
on the finite volume method, so that the global integrations of transported quantities
are numerically conserved. Ordinarily, the standard grid is obtained by recursive
grid division starting from the lowest order icosahedral grid. From the viewpoint of
numerical accuracy of operators, we propose to relocate the variable-defined grid
points from the standard positions to the gravitational centers of control volumes.
From the other viewpoint of numerical stability, we modify the standard grid con-
figuration by employing the spring dynamics, namely, the standard grid points are
connected by appropriate springs, which move grid points until the dynamical system
calms down. We find that the latter modification dramatically reduces the grid-noise
in the numerical integration of equations. The reason for this is that the geometrical
quantities of control volume such as its area and distortion of its shape exhibit the
monotonic distribution on the sphere. By the combination of the two modifications,
we can integrate the equations both with high accuracy and stability.

The performance of our model is examined by the standard test cases of shal-
low water model proposed by D. L. Williamsonet al. (1992, J. Comput. Phys.
102, 211). To investigate the convergence properties against resolution, we per-
form simulations from grid division level 4 (approximately 4.5◦ × 4.5◦ grids) to 7
(approximately 0.56◦ × 0.56◦ grids). The obtained results clearly indicate the ad-
vantage of use of our modified grid over the standard grid for the numerical accuracy
and stability. c© 2001 Elsevier Science
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1. INTRODUCTION

The purpose of this paper is to propose a modified icosahedral grid configuration and
to show excellent results from the time integration of the shallow water model using it. In
this section, we attempt to provide some background to the present work by pointing out
long-standing problems of grid models.

There are many applications in solving partial differential equation systems on a spher-
ical geometry. One of them is in the geophysical fiuid dynamics, including the ocean and
atmosphere dynamics. For numerically solving the ocean dynamics, the grid method has
been used because of existence of land mass. On the other hand, most of today’s atmo-
spheric general circulation models employ the spectral method rather than the grid method
to represent the meteorological fields. This is because the spectral method has the great
advantage of high numerical accuracy over the grid method.

Recently, it was pointed out that the spectral method may not be suitable to high resolution
simulations. One of the main reasons is the computational inefficiency of the Legendre
transformation. In the representation of a field, the spherical harmonics are used as the
basis functions, which consist of the associated Legendre functions and the trigonometric
functions. When a nonlinear term is estimated, the transform between the wavenumber
domain and the physical space is required. The Legendre transformation takes very high
computational cost and the development of fast algorithm [1, 2] for it has not yet been
completed. The operation time of total transformation increases asO(n3), wheren is the
total wavenumber. Another problem is related to the use of a massively parallel computer.
The calculation of the nonlinear term by the spectral method essentially includes a process
requiring all values on the global region. When the spectral method is employed on a
distributed-memory architecture, it requires extensive data movement among computer
nodes. Consequently, the ratio of communication to calculation becomes high and it makes
the scalability of parallelization worse.

The grid method seems to be a good alternative to the spectral method. However, when the
simple latitude–longitude grid is used, another problem, the so-called pole problem, occurs.
The grid spacing near the poles becomes very small as the resolution becomes high. This
causes a very severe limitation of the time interval for advection problem because of the CFL
(Courant–Friedrich–Lewy) condition [3]. There are some techniques to overcome the pole
problem. One of them is the filtering technique [4, 5]. High wavenumber components near
the pole, which tend to appear as grid-scale noise, are removed explicitly. However, general
consensus does not exist for what type of filter is the best and how filters should work.
Furthermore, it is difficult in most cases to explain physical meaning of filters themselves.
As another remedy for the pole problem, the semi-Lagrangian method [6] is applied to
advection scheme. Using this method, we can be free from the CFL limitation. However,
the simple semi-Lagrangian method does not guarantee the conservation of mass. To ensure
it, some modifications may be required [7].

In order to radically overcome the pole problem, other types of grids, which are distributed
as homogeneously as possible on the sphere, are needed One of such grids is the icosahedral
grid. The idea of using icosahedral grids dates from 1960s. The original works in the
meteorological area were performed by Sadournyet al. [8] and Williamson [9]. They
solved the nondivergent barotropic equation by the finite difference method and examined
the performance of the icosahedral grid for the Rossby–Haurwitz wave problem [10] with
wavenumber 6. After those works, they extended the idea to primitive equations models
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[11, 12]. Masuda and Ohnishi [13] also developed the primitive equations model, in which
mass is exactly conserved. The conservations of kinetic energy and potential enstrophy are
also considered in their model, though they are not complete. They also solved the Rossby–
Haurwitz wave with several wavenumbers for their one-layer model (shallow water model).
Another attempt was made to solve the problem not only by the finite difference method
but also by the finite element method. Cullen [14] developed the shallow water model and
Cullen and Hall [15] extended it to the multilayer model.

Although many efforts had been made, as described above, the icosahedral grid method
as well as other grid methods were overwhelmed by the spectral method. This is because,
besides the great advantage of numerical accuracy of spectral method, the development
of fast Fourier transformation [16] somewhat reduced the high calculation cost of the
transformation. However, as described previously, there still remains the problem caused
by the Legendre transformation; that is, it becomes computationally more inefficient as the
horizontal resolution increases.

Recently, several icosahedral grid systems including new ideas have been reconsidered in
the planning of next-generation global models with very high horizontal resolution. Heikes
and Randall [17, 18] developed a shallow water model on their modified icosahedral grid
and tested the performance of their model by the standard test set proposed by Williamson
et al.[19]. Their research group has extended it to a primitive equations model [20]. Stuhne
and Peltier [21] developed a nondivergent barotropic model. They demonstrated that the use
of icosahedral grid is free from the pole problem by applying their model to the barotropic
instability problem near the pole. After that, they developed two shallow water models
formulated by different forms of equations and compared the performances of these mod-
els [22]. Thuburn [23] independently developed a shallow water model, which has the
conservation property for the potential vorticity.

Various grid construction methods using the icosahedron have been proposed. The method
by Sadournyet al. [8] is that each of the triangle sides of spherical icosahedron is divided
into n arcs and the grid points are connected along the geodesic line, wheren is number
of division. The method by Williamson [9] is somewhat different from that of Sadourny
et al. [8]; after dividing the arcs of spherical icosahedron inton, perpendicular lines are
drawn from the division points to the opposite sides and intersecting points are defined as
grid points. The grid construction method used by Cullen [14] and Cullen and Hall [15] is
similar to that of Sadournyet al. [8] but grid lines are not geodesic in their method. Another
method is based on the recursive division technique. This method consists of the following
procedures. Each side of the icosahedron whose vertices are on a unit sphere are projected
onto the sphere. By connecting the midpoints of the geodesic arcs, four subtriangles are
generated from each triangle. By iterating such a process, grid refinement proceeds. This
simple method is employed by many recent researchs [17, 18, 20–23]. Heikes and Randall
[17] modified the grid by twisting the icosahedral grid after first division to obtain the
geometrical symmetry over the equator.

Although the icosahedral grid has the desirable property for the construction of high
resolution geophysical models, that is, the spherical homogeneity of grid size, there still
remain some problems to overcome. One of the problems in the use of icosahedral grid
is the convergence problem of solution, that is, whether the numerical solution reasonably
converges to the exact solution or not as the resolution increases. Actually, Stuhne and
Peltier [22] reported the degradation of accuracy with increasing resolution in the standard
test case 3 [19]. Heikes and Randall [17] also suggested that the result of the nonmodified



582 TOMITA ET AL.

grid indicates a serious problem with regard to the accuracy of operators. They modified
the grid to minimize the error of numerical operators [18].

In this paper, we describe the shallow water model on an icosahedral grid with new grid
modifications. In particular, from the viewpoint of the accuracy of operators, we propose the
relocation of grid points to the gravitational centers of control volumes. Furthermore, we
propose the application of spring dynamics in the configuration of the modified icosahedral
grid. This technique is expected to reduce the grid noise originated from the use of the
Arakawa-A type grid. Combining these modifications, we perform numerical experiments
to demonstrate high numerical accuracy and stability. In Section 2, the governing equations
in this study are described. In Section 3, numerical implementation of the icosahedral grid
to the governing equations is described. Differential operators in the governing equations
are discretized by the finite volume method to conserve the global integration of mass. In
Section 4, we describe our grid modification in detail and show the result of the operator test,
which is similar to that used in Heikes and Randall [18]. In Section 5, the performance of our
shallow water model using the modified grid is examined by the standard test set proposed
by Williamson et al. [19] and also by several additional tests. We show the advantage
of using the grid modified by our techniques. Finally, the concluding remarks and future
directions are described in Section 6.

2. GOVERNING EQUATIONS

There are two forms in writing the momentum equation of the shallow water system:
the vorticity-divergence form and the velocity form. In the vorticity-divergence form, the
vorticity and divergence, which are invariant against the rotation of coordinate because
of scalar quantities, are used as prognostic variables. If this formula is used, we have to
solve the Poisson equation to obtain the velocity field from the vorticity and divergence. To
numerically solve the Poisson equation, massive computational resources are required both
in the calculation and in the communication. Stuhne and Peltier [21, 22] and Heikes and
Randall [17] reduced the computational cost by using the multigrid technique. On the other
hand, the velocity vector is directly solved in the velocity form. The velocity form would have
some advantage over the vorticity-divergence form from the viewpoint of computational
efficiency. For this reason, we employ the velocity form as the momentum equation. Stuhne
and Peltier showed that the physical result of the velocity form is comparable with that of
the vorticity-divergence form.

Côté [24] derived the three-dimensional form of the shallow water equations on the
sphere as

∂v
∂t
+ (v · ∇)v+ f k̂ × v = −∇(gh)− v · v

a
k̂ (1)

∂h∗

∂t
+∇ · (h∗v) = 0, (2)

wherev denotes the velocity vector that has three components but it lies on the tangential
plane.h∗ andh denote the fluid depth and the surface height, respectively. Ifhs denotes the
height of the underlying mountains,h = h∗ + hs. t is time,∇ is gradient operator, and̂k
is vertical unit vector.f , g, anda are the Coriolis parameter, the gravitational acceleration,
and the radius of the earth, respectively. The last term of Eq. (1) represents the constrained
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force so as to satisfy the relation ofk̂ · v = 0. The second term on the left-hand side of
Eq. (1) is rewritten as

(v · ∇)v = (∇ × v)× v+∇
(

v · v
2

)
(3)

= ζ k̂ × v− v · v
a

k̂ +∇
(

v · v
2

)
, (4)

whereζ is vertical vorticity, defined as

ζ = k̂ · (∇ × v). (5)

The detail derivation from Eq. (3) to Eq. (4) is described in Appendix A. From Eqs. (1) and
(4), we can obtain the following vector invariant form:

∂v
∂t
+ (ζ + f )k̂ × v = −∇

(
gh+ v · v

2

)
. (6)

We use Eq. (6) instead of Eq. (1) as the momentum equation. Thus, Eqs. (2) and (6) are the
system equations to be solved in this study.

3. NUMERICAL METHOD

3.1. Spatial Discretization

The refinement of grid is done by the recursive technique, similar to that of Stuhne and
Peltier [21, 22]. In this paper, the grid resolution obtained byl -th dividing operation is
called “glevell .” Hereafter, the grid thus determined will be called the STD-grid. Figure 1
shows the STD-grid with glevel 3. The target resolutions in this study are from glevel 4
(approximately 4.5◦ × 4.5◦ grids) to 7 (approximately 0.56◦ × 0.56◦ grids).

We have an aim to extend our model to a climate model. In a long time-integration,
such as climate simulation, conservations of quantities may be one of the most important

FIG. 1. The grid structure of the STD-grid with glevel 3.
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FIG. 2. Schematic figure of control volume in the STD-grid.

factors. For this reason, we employ the finite volume method for the discretization of
differential operators. All variables are defined at the vertices of triangular grid elements.
This arrangement is something like the Arakawa-A type grid. The schematic figure of
control volume is shown in Fig. 2. The points denoted by black circles are the vertices
of triangular grid elements, that is, variable-defined points. The points denoted by black
triangles are the gravitational centers of triangular grid elements. The control volume for the
point P0 is the polygon constructed by connecting the gravitational centers of neighboring
triangular grid elements. The shape of control volume is hexagon except that it is pentagon
at only 12 points inherited from the original icosahedron.

In Eqs. (2) and (6), three differential operators appear: gradient operator (∇), divergence
operator (∇·), and curl operator (k̂ ·∇×). The divergence operator is discretized by the
following method. If an arbitrary vectoru at Pi in Fig. 2 is known, vectoru at G1 is
calculated as

u(G1) = αu(P0)+ βu(P1)+ γu(P2)

α + β + γ , (7)

whereα, β, andγ are the areas ofG1P1P2, G1P2P0, andG1P0P1, respectively. Vectorsu
at the other pointsGi (i = 2∼ 6) are calculated in the same manner. Ifb1 andn1 denote the
geodesic arc length ofG1G2 and the outward unit vector normal to this arc at the midpoint
of G1G2, the outward fluxf1 crossing over the sideG1G2 is estimated as

f1 = b1
u(G1)+ u(G2)

2
· n1. (8)

Other fluxesfi (i = 2∼ 6) are also estimated in the same manner. From the Gauss theorem,
we can obtain the divergence ofu at the pointP0 as

∇ · u(P0) = 1

A(P0)

6∑
i=1

bi
u(Gi )+ u

(
G1+mod(i,6)

)
2

· ni , (9)

whereA(P0) is the area of control volume at the pointP0.
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The curl operator and gradient operator are estimated in the similar manner of divergence
operator; line integral values along the border of the control volume are divided by the area
of control volume. Ifm1 denotes the counterclockwise unit vector parallel to the arcG1G2

at the midpoint, we can obtain the vertical component of∇ × u at the pointP0 as

k̂ ·∇ × u(P0) = 1

A(P0)

6∑
i=1

bi
u(Gi )+ u

(
G1+mod(i,6)

)
2

·mi . (10)

The gradient operator for an arbitrary variableq can be calculated as

∇q(P0) = 1

A(P0)

6∑
i=1

bi
q(Gi )+ q

(
G1+mod(i,6)

)
2

ni − q0

A(P0)

6∑
i=1

bi ni . (11)

The second term of Eq. (11) is the correction term. If this term was neglected, the gradient
vector of homogeneous field would not vanish because of the curvature of the spherical
surface.

To continue numerically stable runs, we may add the fourth-order hyperviscosity term to
the right-hand side of Eq. (6) as

LHS of (6) = RHS of (6)− ν∇4v, (12)

whereν is the viscosity coefficient. We discretize this term as follows. Gradient vectors of
velocity component atGi (i = 1∼ 6) are calculated from values at three surroundingPi

points as in Eq. (11), but the correction term is omitted. The Laplacian atP0 is obtained
from divergence of the gradient vectors like Eq. (9). The discretization of the operator∇4

can be obtained by operating this process twice.

3.2. Temporal Scheme

All temporal integrations are performed explicitly. The third order Adams–Bashforth
method is used as the temporal scheme as

Vn+1− Vn

1t
= 1

12

[
23
∂V
∂t

∣∣∣∣n − 16
∂V
∂t

∣∣∣∣n−1

+ 5
∂V
∂t

∣∣∣∣n−2]
, (13)

whereV = (h, v). This scheme requires the temporal tendencies at two past time levels.
Therefore, for two steps from the initial time, the fourth-order Runge–Kutta scheme is used.
The time interval1t is limited by the CFL condition of the gravity wave speed.

3.3. Other Computational Techniques

The data structure of variables in programming is similar to that of Stuhne and Peltier
[21]; 10 rectangular regions are constructed by connecting two neighboring triangles of
the original icosahedron. Such a structure of 10 rectangular regions is defined as region
division level 0. We can divide regions by a scheme similar to that of grid division. Namely,
four subrectangles are generated from each rectangle by connecting the diagonal mid-grid
points. If this process is repeatedn times, we can obtain the region structure of region
division leveln. All variables for each region can be described by a two-dimensional array
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of Fortran. Data described above are designed in anticipation of the massively parallel
computing based on vector processors.

In all calculations in this paper, the region division level is set to zero, so that the num-
ber of CPUs used is ten. The simulations are performed on a PC cluster,1 in which the
communication between computer nodes is performed by using Message Passing Interface
(MPI).2

4. GRID MODIFICATION

Heikes and Randall [18] modified the grid structure to improve the accuracy of differential
operators. In this section, in order to improve the accuracy of operators and to reduce the
systematic grid noise, we propose a new modification method different from that of Heikes
and Randall [18].

First, we consider the location of grid points as follows. Since operators at the grid point
P0 (Fig. 2) are discretized by the finite volume method as Eqs. (9)–(11), the values of the
right-hand side in those equations represent average values in hexagonal or pentagonal
control volumes. On the other hand, the values of the left-hand side represent the values at
the grid pointP0. It is desirable that grid points should coincide with points whose values
represent average values in the control volumes. It is natural to consider that the point
representing the average value in the control volume should be the gravitational center of
the control volume. However, it is not always so in the original STD-grid. Therefore, we
move the location of the grid point to the gravitational center of the control volume. A
schematic diagram of this process is shown in Fig. 3. We call the modified grid system the
STD-GC-grid. This modified grid system provides the increase of accuracy for numerical
operators. The mathematical proof for this property is given in Appendix B. Furthermore,
it provides consistency with the governing equations in that the other volume forces, such
as Coriolis force appearing in Eq. (6), are defined at the gravitational center of control
volume.

As proposed by Heikes and Randall [18], we introduce the test functions,

α(λ, θ) = sin(λ), (14)

β(λ, θ) = cos(mλ) cos4(nθ), (15)

whereλ andθ are longitude and latitude andm andn are arbitrary integers. Using these
functions, we define a vectoru as

u = α∇β

= i
[
−m

cos4(nθ)

cos(θ)
sin(λ) sin(mλ)

]
+ j [−4n cos3(nθ) sin(nθ) sin(λ) cos(mλ)], (16)

wherei andj are longitudinal and latitudinal unit vectors, respectively. We numerically cal-
culate∇ · u, k̂ · (∇ × u), and∇β by using Eqs. (9)–(11), respectively. These are compared
with the exact solutions. Numerical errors are estimated by using one norm, two norm, and

1 See http://www.beowulf.org/.
2 See http://www.mpi-forum.org/.
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FIG. 3. Schematic figure of control volume in the STD-GC-grid.

infinity norm defined a

l1(x) = I [|x(λ, θ)− xt (λ, θ)|]
I [|xt (λ, θ)|]

l2(x) = {I [(x(λ, θ)− xt (λ, θ))
2]}1/2

{I [xt (λ, θ)2]}1/2

l∞(x) = maxall λ, θ |x(λ, θ)− xt (λ, θ)|
maxall λ,θ |xt (λ, θ)| , (17)

wherex represents either a scalar or a vector andI denotes the global-averaged operator;
xt denotes the exact value ofx; l1 andl2 norms represent globally averaged errors; andl∞
norm represents the maximum error in the global region.

Table I shows the norms form= 1 andn= 1 with glevel 5. For all norms and all opera-
tors, the results of the STD-GC-grid are improved in comparison with those of STD-grid.
Especially, thel∞ norms are much improved. This means that the local errors are much
reduced by the gravitational-centered modification.

To examine the error distribution on the sphere, we perform the following test. Solid
rotation field (v) whose rotation axis corresponds toz-axis as shown in Fig. 1 is set to the
grid points and its divergence (∇ · v) is numerically solved. Since∇ · v = 0 analytically,
a numerical value of|∇ · v| indicates the difference from the exact solution. Figure 4a
shows the distribution of|∇ · v| for the STD-GC-grid with glevel 5. Relatively large errors
appear along the edge of triangles generated by the grid construction described in the
previous section. In this case, the primary errors are on the lines of glevel 1 boundaries. The
secondary errors are on the lines of glevel 2.

We define two geometrical quantities of control volume. One is its area denoted byA
and the other is the distortion of its shape, which is defined as

S=
[{

6∑
i=1

(l i − lmean)
2

}/
6

]1/2/
lmean, (18)
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TABLE I

Comparison of Accuracies of the Differential Operators

among the STD-Grid and the STD-GC Grid

Divergence operator

l1 l2 l∞
STD-grid 3.580× 10−3 3.579× 10−3 7.194× 10−3

STD-GC-grid 2.981× 10−3 2.753× 10−3 2.546× 10−3

Rotation operator

l1 l2 l∞
STD-grid 2.721× 10−3 2.936× 10−3 6.273× 10−3

STD-GC-grid 2.169× 10−3 2.086× 10−3 5.568× 10−3

Gradient operator

l1 l2 l∞
STD-grid 2.295× 10−3 2.764× 10−3 8.882× 10−3

STD-GC-grid 1.830× 10−3 1.861× 10−3 2.814× 10−3

wherel i denotes the side length of control volume andlmeanis the reference length estimated
from the area of control volume, which is defined as

lmean=
(

2

3
√

3
A

)1/2

. (19)

Figures 4b and 4c show the distributions ofA and S. As shown in Fig. 4b and 4c, the
recursive method of grid construction leads to a fractal structure in regard to the geometrical
quantities of control volume; the differences from the mean values originate from the first
division of grid construction. These differences are inherited to the next refined grid system
at the second division. Thus, the grid system inherits the geometrical quantities from its
previous generation. Comparing with Fig. 4a, it is seen that the region where a large error
of numerical solution exists strongly corresponds to the region where the gradients of area
and distortion of control volume are steep. The error pattern of|∇ × v| is similar to those
of area and distortion, so that it may cause the generation of systematic grid noise at the
temporal evolution of governing equations.

We can easily guess from the above discussion that if we construct a grid system in
which geometrical quantities vary monotonically on the sphere, the error distribution on
this grid system would be also monotonic so that the grid noise is reduced. To construct
such a grid system, we propose an application of spring dynamics as follows. After the grid
is constructed by the recursive method, grid points are connected by appropriate springs.
Figure 5 shows the schematic figure of this process. The mathematical expression of this
dynamic system can be described as

6∑
i=1

k(di − d̄)ei − αw0 = M
dw0

dt
(20)

w0 = dr0

dt
, (21)
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FIG. 4. (a) Error distribution of the divergence operator, (b) distribution of area of control volume, and
(c) distribution of distortion of control volume for the STD-GC-grid. The values increase as color order of red,
green, and blue.

wherek is spring constant,di and d̄ are the length of arcP0Pi , and the length of spring
without imposed force, respectively,ei is unit vector in the direction fromP0 to Pi on the
tangential plain atP0, α is the frictional constant,w0 is the velocity vector atP0, M is an
arbitrarily defined mass, andr0 is the position vector ofP0. When the system calms down
to the static balance,w0 = 0 anddw0/dt = 0, so that the following relation is satisfied:

6∑
i=1

(di − d̄)ei = 0. (22)

Thus, the grid can be obtained only by tuningd̄, which is formulated using the grid division
level l as

d̄ = β 2πa

10× 2l−1
, (23)
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FIG. 5. Schematic figure of connection of spring in the modification using spring dynamics.

whereβ is the tuning parameter. The numerator and denominator on right-hand side
of Eq. (23) represent the length of the equator and the number of grid points on the
equator. In this study, we setβ = 0.4. By using the STD-grid as the initial condition,
Eqs. (20) and (21) are numerically solved until the balance equation (22) is satisfied.
After that, control volumes are defined and grid points are moved to the gravitational
centers of the control volumes in the same way as STD-GC-grid (Fig. 3). We call this
grid the SPR-GC-grid. Figure 6 shows the SPR-GC-grid with glevel 3. Comparing the
SPR-GC-grid (Fig. 6) with the STD-grid (Fig. 1), grid lines of the SPR-GC-grid are more
smoothly curved than those of STD-grid, especially, near the 12 singular points. Instead,
the grid intervals of the SPR-GC-grid near the singular points are a little smaller than
those of STD-grid. In Appendix C, we discuss this problem and propose a countermeasure
to it.

FIG. 6. The grid structure of the SPR-GC-grid with glevel 3.
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Figure 7 shows the geometrical quantities and the error of divergence. The distributions
of area and distortion of control volume show monotonic variations on the sphere. Conse-
quently, the error distribution has also monotonicity and the noise-like error as shown in
Fig. 4a disappears.

In order to check the convergence property of the SPR-GC-grid as increasing the res-
olution, we perform the operator test of∇β, ∇ · u, andk̂ · (∇ × u) using Eqs. (14)–(16)
for higher modes ofm= 3 andn = 3. The convergences ofl2 and l∞ norms defined by
Eq. (17) for each of operators are shown in Fig. 8. For the STD-grid, thel2 norms are
reduced by a factor of four with each increment of glevel. In this sense,l2 norms for the
STD-grid vanish with the second order. However, the convergence speeds for thel∞ norms
become slower for higher resolution. For example, for the STD-grid,l∞(k̂ · (∇ × u)) be-
comes only half with the increment of glevel as shown in Fig. 8c. On the other hand,
for the SPR-GC-grid, bothl2 and l∞ norms are reduced by a factor of four for all the
operators.

5. NUMERICAL RESULTS

The suite of test cases proposed by Williamsonet al. [19] has been used to investigate
the performance of our shallow water model. There are seven cases in the suite. Our results
of test case 1 and 4 are similar to those of Heikes and Randall’s model [17]. We describe
the results of test case 2, 3, 5, 6, and 7 in the following.

5.1. Test Case 2: Global Steady State Nonlinear Zonal Geostrophic Flow

This test case has a steady state solution of the nonlinear shallow water equations. The
initial condition of the velocity field represents a solid body rotation, and the height field is
in the geostrophic balance. The rotation axis of solid rotation can be chosen in any direction
in the spherical coordinate and the Coriolis parameter becomes a function of longitude and
latitude as

f = 2Ä(−cosλ cosθ sinα + sinθ cosα), (24)

whereα is angle between the rotation axis and the coordinate axis. Williamsonet al. [19]
suggest that tests should run withα = 0.0, 0.05, π/2, andπ/2− 0.05. We set the same
parametersu0 andgh0 as described in Eqs. (90)–(96) in Williamsonet al.[19]. The numbers
of time steps are set as 593, 1185, 2370, and 4740 in simulations for glevel 4, 5, 6, and 7,
respectively. The corresponding time intervals are similarly equal to 728, 364, 182, and 91
s. All the cases are run without hyperviscosity.

Figure 9a shows the temporal histories ofl∞(h) norm for α = 0 using the STD-grid,
the STD-GC-grid, and the SPR-GC-grid. Thel∞(h) norm of the STD-grid is larger than
the others even in the first stage and it becomes much larger as time goes on. This is
because the operators in the case of the STD-grid are less accurate than those in the other
grids. Thel∞(h) norm of the STD-GC-grid has a similar history to that of the SPR-GC-
grid until t = 1 day, but it becomes large aftert = 1 day. The reason why the result of
the STD-GC-grid becomes worse is that, although the discretized operators of the STD-
GC-grid are more accurate than those of the STD-grid, the discretized operators include
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FIG. 7. (a) Error distribution of the divergence operator, (b) distribution of area of control volume, and
(c) distribution of distortion of control volume for the SPR-GC-grid. The contour intervals are same as those in
Fig. 4.

the systematic errors as shown in Fig. 4a so that a small grid noise, which occurs initially,
is amplified and finally the whole field is contaminated by the noise. Although there is
a small noise also in the case of the SPR-GC-grid, it is not amplified. Consequently, the
l∞(h) norm of the SPR-GC-grid is kept at almost the same values of the initial 1 day during
5 days.

Four runs of differentα for glevel 5 are performed using the SPR-GC-grid. The rotation
axis intersects the vertices of the major spherical triangles for the case ofα = 0, while the
rotation axis penetrates the center of major spherical triangles for the case ofα = π/2. The
results shown in Fig. 9b indicate little difference among the four cases. We may say that
this is due to the isotropy of grid structure.

Figure 10 shows the dependence on the resolution using the SPR-GC-grid. Thel2(h)
norm is reduced by a factor of four with each increase in grid division level. Thel∞(h)
norm also is reduced by a factor of four. The results for the velocity fieldv also indicates
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FIG. 8. Convergence properties of error norms form= 3 andn = 3. (a) Divergence operator, (b) rotation
operator, and (c) gradient operator.

similar convergence. Thus, for the prognostic variables, the second-order accuracy can be
kept in both the global and the local sense.

The results ofl∞(h) for glevel 5 andα = 0 are shown in the Fig. 8 of Heikes and Randall
[17] and Fig. 2 of Stuhne and Peltier [22]. Thel∞(h) norm of the former maintains a value of
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1∼ 2× 10−4 with some fluctuations. That of the latter is about 5× 10−4, which is the best
value in their runs (vsw5). As shown in Fig. 10b, ourl∞(h) has a value around 2× 10−4,
so that our value is comparable to that of Heikes and Randall [17] and is somewhat better
than that of Stuhne and Peltier [22].

In the discretized system equations, there are two factors which generate higher wavenum-
ber components. One is the nonlinear effect and the other is associated with discretized
schemes. If the nonlinear effect is dominant, the viscosity term should be added to dissipate
the high wavenumber components. This test case is free from the nonlinear effect, because
the exact solution is steady. In this sense, we can regard this test case as the test to measure
how long the model runs without viscosity. As previously shown in Fig. 9a, the result using
the SPR-GC-grid indicates good accuracy and high stability. Although the originally pro-
posed integration time of test case 2 is 5 days, we extend the integration time to 3 months.
Figure 11 shows the temporal histories ofl∞(h) norm for the SPR-GC-grid with glevel
6 and 7. The level of values ofl∞(h) remains unchanged from the beginning to 90 days.
We may say that the use of the SPR-GC-grid is the best choice in grid structures from the
viewpoint of numerical stability.

FIG. 9. The temporal variation ofl∞(h) norm for test case 2 (glevel 5). (a) Comparison between the grid
systems forα = 0 and (b) comparison between different values ofα for the SPR-GC-grid.
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FIG. 10. The dependence of error norms on the resolution for test case 2 withα = 0 (SPR-GC-grid). (a) The
l2(h) norm and (b) thel∞(h) norm.

5.2. Test Case 3: Steady State Nonlinear Zonal Geostrophic
Flow with Compact Support

This test case was designed by Browninget al. [25]. The velocity field is a zonal flow
as in test case 2, but the nonzero velocity region is confined in a range of latitude, that is,

FIG. 11. The temporal variation ofl∞(h) norm for the 90 days integration of test case 2 withα = 0.
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FIG. 12. Convergence properties of error norms by the grid refinement test for test case 3 withα = π/3. Solid
thick line represents the ideal quadratic convergence.

the jet flows in the midlatitude. The height field is in the geostrophic balance. The exact
solution is steady. The initial conditions used are given in Eqs. (101)–(115) of Williamson
et al. [19]. The angle between rotation axis and coordinate axis is set asα = 0 andα =
π/3.

FIG. 13. Height field at the 15 days for the SPR-GC-grid with glevel 6.



MODIFIED ICOSAHEDRAL GRID 597

FIG. 14. Height field differences from the spectral result of T-213 for test case 5. Contour interval is 5 m.
Solid lines and shaded lines indicate the positive and negative, respectively.

Williamsonet al.[19] proposed a mesh convergence test forα = π/3. Stuhne and Peltier
[22] reported the degradation of accuracy with an increase in grid division level in this test
case. Figure 3 of their paper [22] shows the increase of values for several error norms if
the grid is refined from glevel 5 to 7. Heikes and Randall [17] reported that the twig10242
(glevel 5) results are quite a bit better than those of twig02562 (glevel 4). Their Fig. 9
shows that the norms of twig10242 are only half of those of twig02562, indicating the
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FIG. 15. The temporal variations of error norms for test case 5.

numerical solution is converging to the exact solution with first-order accuracy. Stuhne
and Peltier [22] noted that the degradation is the result of the combined contribution of
spatial and temporal truncation errors, computational noise, numerical imprecision, and
other factors.

In order to investigate the convergence property of our model, we perform the simulations
from glevel 4 up to 8 using the SPR-GC-grid. Values of the norms defined in Eq. (17) att =
5 days are plotted in Fig. 12, where the thick solid line indicates the quadratic convergence.
We can see that all the norms become smaller along the ideal line as the resolution increases.
These results would be reasonable, because the accuracies of all the operators are in the
second order, as previously shown in Fig. 8.

5.3. Test Case 5: Zonal Flow over an Isolated Mountain

Test case 5 has a dynamic evolution of flow. The initial condition is similar to that in
test case 2, that is, the velocity field is the solid body rotation and the height field is in the
geostrophic balance. The reference depth and the maximum flow speed are set ash0 = 5960
m andu0 = 20 m/s, respectively. A mountain whose height is 2000 m is located at 30◦N,
90◦W. The detail formulation of the mountain is shown in Eq. (134) in Williamsonet al.
[19]. Total integration time is 15 days.

We perform this test case with our icosahedral model using the SPR-GC-grid without
hyperviscosity. The time intervals are set to1t = 480, 240, 120, and 60 s for glevel 4, 5,
6, and 7, respectively. Figure 13 shows the snapshot ofh at 15 days with glevel 6. In this
figure, contour lines are plotted on all of triangular elements using the raw data distributed
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FIG. 16. Convergence properties of error norms of spectral results for test case 3 at 15 days. The T-426
spectral solution is employed as the reference solution.

on the icosahedral grid points. In spite of the absence of viscosity, the grid noise does not
appear so that the contour lines are smoothly curved.

Since there is no analytic solution in this test case, a reference solution is obtained from
integration of our spectral model3 with T-213. For this spectral calculation, the vorticity-
divergence form is used as the equation system. The vorticity, divergence, and geopotential
are explicitly solved, and velocity is solved by Laplacian inversion of vorticity and diver-
gence. The temporal evolution is performed using the fourth-order Runge–Kutta method
and the time interval is set as 7364 time steps for a one-day simulation.

We process the spectral results as follows. Since we have the spectral coefficients by
the simulations, we construct the data of spectral method on the icosahedral grid points
by using the coefficients of spherical harmonics. Subtracting the icosahedral result from
them, we can obtain the differences between the two data sets. Figure 14 shows the height
field differences from the T-213 spectral model result att = 15 days for glevel 4 up to
7. The large phase errors which appear in the lowest resolution become reduced with
increasing resolution. There are some noise-like errors around the mountain for glevel 5
and 6. As described previously, this test case is performed without hyperviscosity, so that
high wavenumber components generated by the nonlinear effect, which is large near the
mountain, are not eliminated. The noise-like errors may be caused by the nonlinear effect.

3 Several subroutines in ispack-0.5 [26] are used.
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FIG. 17. Dissipation rates of total energy and potential enstrophy for test case 5.

The temporal evolutions of thel2 andl∞ norms ofh andv are shown in Fig. 15. The globally
averaged errorsl2 are reduced with increasing resolution as shown in Figs. 15a and 15c.
The local errorsl∞ are also reduced as shown in Figs. 15b and 15d. Although there is a
little degradation of accuracy forl∞(h) from glevel 5 to 6, the value ofl∞(h) decreases
again from glevel 6 to 7.

We have employed the T-213 spectral solution as the reference solution and assumed that
it represents the “true” solution. However, it should be noted that the reference solution
may not exactly be the “true” solution. To examine this issue, using our spectral model,
we perform simulations for spectral truncation 42, 63, 106, 213, and 426. Figure 16 shows
the error norms against the T-426 result at 15 days. Jakob-Chienet al. [27] also performed
test case 5 simulations for T-42 and T-63 and showed the error norms against T-213. Our
norms for T-42 and T-63 are somewhat smaller than their norms. The convergence speed of
norms between T-42 and T-63 by our model is comparable to that of their model. As shown
in Fig. 16, the convergence speed is not as high as expected from the spectral accuracy
criterion, even in higher resolutions. Several reasons for this can be speculated. One of
the main reasons would be that the shape of mountain is not differentiable, as pointed out
by Jakob-Chienet al. [27]. Figure 16 suggests that the T-213 result, that is, our reference
solution, includes at least errors of the order shown against the “true” solution. In comparison
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TABLE II

The Hyper Viscosity Coefficients Used in Test Case 5

Viscosity coefficient:ν [m4/s] E-folding time:Tef [h]

1.39681× 1015 0.5
6.98406× 1014 1
3.49203× 1014 2
1.74601× 1014 4
8.73007× 1013 8
4.36503× 1013 16
2.18251× 1013 32

with the icosahedral results of glevel 7 (Fig. 15), the norm errors of T-213 is one-tenth of
those errors. So, we can say that the solution of T-213 can be treated as a reference solution
until glevel 7. However, its validity may be reduced as compared to icosahedral results with
much higher resolutions.

One of the purposes in test case 5 is to investigate the global conservation proper-
ties of models. Since our model is based on the finite volume representation, massh∗ is

FIG. 18. Temporal variations of1TE for the 90 days simulations. (a) the STD-GC-grid and (b) the SPR-GC-
grid.
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FIG. 19. Height field for the 90 days simulations withTef = 32 hours using the SPR-GC-grid.

perfectly conserved. In our model, the vorticityζ and divergenceδ(=∇ · v) are not prog-
nostic variables. If we define these quantities diagnostically as Eqs. (9) and (10), they are
also conserved.

We check the conservation of total energyTE and potential enstrophyPEdefined as

TE= 1

4πa2

∫ ∫ (
1

2
h∗v · v+ 1

2
g
(
h2− h2

s

)− Ep0

)
dσ (25)

PE= 1

4πa2

∫ ∫
1

2h∗
(ζ + f )2 dσ, (26)

whereEp0 denotes the potential energy in the initial state anddσ denotes the infinitesimal
element of area. The definition of total energy in Eq. (25) is the same as that of Stuhne
and Peltier [22] but different from that of Williamsonet al. [19]. The difference rates from
initial values forTE andPEare defined as

1TE= TE− TE0

TE0
(27)

1PE= PE− PE0

PE0
, (28)
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FIG. 20. Height field for test case 6 at the 14 days. Contour intervals are 200 m.

whereTE0 andPE0 are the initial values. Figure 17 shows the temporal variations of|1TE|
and |1PE|. The rapid decreases near 2 days for|1TE| and near 10 days for|1PE| are
due to the change of sign of1TE and1PE. The differences decrease in the quadratic
sense as the increment of glevel. Thus, conservative quantities also have the second-order
accuracy.

A remarkable performance using the SPR-GC-grid is demonstrated in the long-time
simulation based on test case 5. The total simulation time is 90 days and the number of
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FIG. 21. The temporal variations of error norms for test case 6.

glevel is 6. Since the nonlinear term generates high wavenumber components in this case,
the fourth-order hyperviscosity term defined as Eq. (12) is added to the momentum equa-
tion. The used coefficients are shown in Table II, whereTef means the e-folding time for
waves of two-grid-scale wavelength. Figure 18a shows the temporal variation for dissi-
pation ofTE defined as Eq. (27) using the STD-GC-grid. Total energies forTef = 0.5, 1,
and 2 hours smoothly decay. However, the variation forTef = 4 hours includes a small
fluctuation. It is suggested from investigation of height field that the small fluctuation of
temporal history of1TE is caused by the amplifying nonphysical grid noise, which inter-
mittently appears during simulation times. Figure 18b shows the same figure as Fig. 18a
but using the SPR-GC-grid. For all of simulations using this grid system, total energies
decay smoothly. The height fields forTef = 32 hours are shown in Fig. 19. In Fig. 18b, the
spectral model result of T-106 forTef = 4 hours is also shown. The history of its decay after
50 days is in good agreement with that of the icosahedral result of the SPR-GC-grid for the
same viscosity.

5.4. Test Case 6: Rossby–Haurwitz Wave

The Rossby–Haurwitz wave has been used for performance check of models since it
was proposed by Phillips [10]. It is analytic solution of the nondivergent barotropic equa-
tion. Historically, this wave was used for nondivergent barotropic models based on the
icosahedral grid at the first stage [9, 8]. Williamsonet al. [19] introduced the Rossby–
Haurwitz wave as one of the standard tests for shallow water models with a simple set of
parameters.
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FIG. 22. Height field (left) and difference height field (right) from the T-213 spectral results for test case 7 at
5 days. The viewpoint of these figures are at the north pole. Contour intervals are 100 m for left figures and 30 m
for right figures.

Since the shallow water equations include gravity waves, it is not guaranteed for the initial
balance to remain during temporal evolution. The stability of zonal waves in the shallow
water equations, which is well discussed in Hoskins [28] and Thuburn and Li [29], is not
concerned here. In this paper, we deal with T-213 spectral results as the reference solutions
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as in test case 5. The initial condition is the same as Eqs. (141)–(149) in Williamsonet al.
[19]. We perform simulations of this test case for glevel 5, 6, and 7 without viscosity. The
time intervals are the same as those of test case 5.

Figure 20 shows the height fields using the SPR-GC-grid at 14 days. The equatorial
symmetry is broken in the field of glevel 5 (Fig. 20a). This is obviously due to the asymmetry
of the grid structure. Heikes and Randall [17] proposed the twisted icosahedral grid to
avoid these errors. However, as resolution increases, the asymmetric errors become small
(Fig. 20b and 20c). Thel2 andl∞ norms against the reference solution are shown in Fig. 21.
Convergence properties are better than those of test case 5 (Fig. 15). The reason for this
would be that high wavenumber components are not large in test case 6.

5.5. Test Case 7: Analyzed 500 mb Height and Wind Field Initial Conditions

The final test case is to imitate real atmospheric motions. The initial condition is based
on data at 0000 GMT 21 December 1978 [30]. We perform simulations in this case using
the SPR-GC-grid from glevel 5 to 7. The hyperviscosity coefficients are set so that e-
folding time of decay for the two-grid-scale wave corresponds to 4 hours, that is,ν =
2.7936× 1015, 1.7460× 1014, and 1.0913× 1013 for glevel 5, 6, and 7, respectively. The
time intervals are the same as those of test case 5 or 6.

Figure 22 shows the height and velocity fields at 5 days and the differences from the
T-213 spectral model result. Our solutions for glevel 5 and 6 shown in Fig. 22a and 22b
are in good agreement with those of Heikes and Randall [18] (see Figs. 19 and 20 in [18]).
In glevel 7 (Fig. 22c), there is better correspondence to the T-213 spectral solution. Thus,
the icosahedral model solution is well converged to the reference solution in the case of
realistic flows as well.

6. CONCLUSIONS

We develop a new shallow water model on the modified icosahedral grid. The vector
invariant form is employed as the momentum equation. The discretization of equations is
based on the finite volume method. A modification of the grid is that the locations of grid
points are moved to the gravitational centers of the control volumes. By this modification, the
accuracy of differential operators is improved. In order to reduce the systematic grid noise,
the grid system is also modified by solving the spring dynamics. By the combination of
the above two modifications, we can obtain the ideal convergences for numerical operators
as shown in Fig. 8 and the grid noise is well reduced as demonstrated by the long time-
simulation for the zonal geostrophic problem (test case 2 of [19]). Using the modified
grid, the excellent performances are also obtained for the other test cases. Apparently, the
modification of grid by spring dynamics and gravitational-centered relocation is a fine step
both for numerical accuracy and for numerical stability.

Our goal is the development of the high resolution climate model which couples the
atmospheric and oceanic general circulation models to help us understand the mechanism
of global changes such as the global warming. Especially, we intend that the resolution
eventually increases up to cloud resolving scale (10 km or less) for the atmospheric model.
The development of the shallow water model in this study is the first step to the goal. We
showed that if the icosahedral grid is employed as the horizontal grid system, there would
be no problem on the numerical accuracy of operators in the high resolution calculation.
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From the viewpoint of computational efficiency, we are now further developing this model
for implementations in massively parallel computers and investigating the computational
efficiency in comparison with the spectral method.

APPENDIX A

In this section, we describe how to obtain Eq. (4) from Eq. (3). An arbitrary tangential
plane on the sphere is considered. We put anx-y-zCartesian coordinate in whichx-y planes
are parallel to the tangential plane and the origin corresponds to the contact point between
the spherical surface and the plane.z is directed to the vertical.

At the origin, the relations are satisfied,

w = 0,
∂u

∂z
= ∂v

∂z
= 0, (A.1)

where,u, v, andw arex-, y-, andz-components of velocity vectorv. Using Eq. (A.1), the
vorticity vectorω at the origin can be written as

ω = ∇ × v =
(
∂w

∂y
,−∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
. (A.2)

Thex- andy-components ofω do not vanish because of curvature of the spherical surface.
From the constraint that the normal component of velocity vector to the spherical surface
equals to zero, we can obtain the horizontal derivatives ofw at the origin as

∂w

∂y
= −v

a
,

∂w

∂x
= −u

a
. (A.3)

We can interpret Eqs. (A.2) and (A.3) to the following formulation:

ω = ζ k̂ + k̂ × v
a
. (A.4)

This vector formulation is true at any point on the spherical surface. From Eq. (A.4), we
can obtain the following equation:

ω × v= ζ k̂× v− v · v
a

k̂. (A.5)

Equation (4) is derived from Eq. (3) with Eq. (A.5).

APPENDIX B

In Section 4, we see the increase of computational accuracy by the move of the location
of grid point to the gravitational center of control volume. In this section, the mathematical
proof of this fact is given. First, consider an arbitrary triangle on a flat plane and let the
positions of vertices be (x1, y1), (x2, y2), and (x3, y3) in counterclockwise order (Fig. 23a).
We define the quadratic functionu(x, y) as

u(x, y) = Ax2+ By2+ Cxy+ Dx + Ey+ F, (B.1)
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FIG. 23. (a) Schematic figure of a triangle on a flat plane. (b) That of a polygon.

whereA, B, C, D, E, andF are constant. The exact solution of gradient ofu is obtained
from Eq. (B.1) as

[∇u] t (x, y) =
(

D + 2Ax+ Cy

E + Cx+ 2By

)
. (B.2)

Integratingu along three sides of triangles, we can obtain an estimation value of∇u on this
triangle as

[∇u]c = 1

A

∮
un dl = 1

A

[∫ 2

1
un12 dl12+

∫ 3

2
un23 dl23+

∫ 1

3
un31 dl31

]
, (B.3)

wheren anddl denote the normal vector to the side and the infinitesimal line element.
Subscriptij (i 6= j ) means value along sideij from the pointi to the point j . A is the area
of the triangle. The equation of lineij is written as

y− yi = yj − yi

x j − xi
(x − xi ). (B.4)



MODIFIED ICOSAHEDRAL GRID 609

The termsni j , di j , andA can be expressed as

ni j = 1√
(xj − xi )2+ (yj − yi )2

(
yj − yi

−(xj − xi )

)
, (B.5)

dli j =
√
(xj − xi )2+ (yj − yi )2

xj − xi
dx, (B.6)

A = 1

2
(x1y2+ x2y3+ x3y1− x3y2− x2y1− x1y3) (B.7)

Substituting Eqs. (B.4)–(B.7) to Eq. (B.3), we can obtain

[∇u]c =
(

D + 2A(x1+ x2+ x3)/3+ C(y1+ y2+ y3)/3

E + C(x1+ x2+ x3)/3+ 2B(y1+ y2+ y3)/3

)
. (B.8)

From Eqs. (B.2) and (B.8), we can say that the estimation value [∇u]c corresponds to the
exact solution [∇u]t at the gravitational center of triangle.

We can prove that this is true for an arbitrary polygon as follows. Again, the quadratic
functionu(x, y) is defined as Eq. (B.1). As shown in Fig. 23b, ann-th polygon is divided
into n triangles. The gravitational center and area of the triangle 0− k− k+ 1 are denoted
by gk = (gkx, gky) andAk, respectively. In a similar way to Eq. (B.3), the gradient ofu on
the polygon is estimated as

[∇u]c = 1

A

[∫ 2

1
un12 dl12+

∫ 3

2
un23 dl23+ · · · +

∫ 1

n
unn1 dln1

]
= 1

A

[(∫ 1

0
un01 dl01+

∫ 2

1
un12 dl12+

∫ 0

2
un20 dl20

)
+
(∫ 2

0
un02 dl02+

∫ 3

2
un23 dl23+

∫ 0

3
un30 dl30

)
+ · · · · · ·

+
(∫ n

0
un0n dl0n +

∫ 1

n
unn1 dln1+

∫ 0

1
un10 dl10

)]
= 1

2

[∮
012

un dl +
∮

023
un dl + · · · +

∮
0n1

un dl

]
, (B.9)

where
∮

0i j denotes the line integral around the triangle 0ij . Note that the second line in
Eq. (B.9) is derived from the first line with the relation ofni j = −n j i . From the conclusion
in the previous paragraph, we can write the line integral around the triangle 0− k− k+ 1
as ∮

0kk+1
un dl = Ak[∇u]t (gk). (B.10)

Substituting Eq. (B.10) into Eq. (B.9), we can obtain the following formulation for the
estimation value:

[∇u]c =
n∑

i=1

Ai [∇u]t (gi )

/
n∑

i=1

Ai . (B.11)
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Using Eq. (B.2), Eq. (B.11) can be written as

[∇u]c =
(

D + 2AGx + CGy

E + CGx + 2BGy

)
= [∇u]t (G), (B.12)

whereG ≡ (Gx, Gy) = (
∑n

i=1Ai gix/
∑n

i=1Ai ,
∑n

i=1Ai giy/
∑n

i=1Ai ). The vectorG repre-
sents the gravitational center of then-th polygon. Thus, we can say that for an arbitrary
polygon, the estimation value [∇u]c corresponds to the exact solution [∇u]t at its gravita-
tional center.

Now, let the functionu be a general function and the origin of coordinates be near the
central point of then-th polygon. Note that the origin does not need to correspond to the
gravitational center. We can expandu to the Taylor series around the origin as

u(x, y) = û(x, y)+ ε,

û(x, y) ≡ u|O + ∂u

∂x

∣∣∣∣
O

x + ∂u

∂y

∣∣∣∣
O

y+ 2
∂2u

∂y∂y

∣∣∣∣
O

xy+ ∂
2u

∂x2

∣∣∣∣
O

x2+ ∂
2u

∂y2

∣∣∣∣
O

y2, (B.13)

whereε represents the residual of which the leading terms are cubic polynomials.
Differentiating Eq. (B.13), we can obtain

[∇u]t (r) = [∇û]t (r)+ [∇ε]t (r). (B.14)

This equation can be rewritten as

[∇u]t (r) = [∇û]t (G)+ J(r −G)+ [∇ε]t (r), (B.15)

whereJ is the following matrix:

J = 2

 ∂2u
∂x2

∣∣
O

∂2u
∂x∂y

∣∣
O

∂2u
∂x∂y

∣∣
O

∂2u
∂y2

∣∣
O

. (B.16)

On the other hand, by the same way as Eq. (B.9), the estimation value has the following
form:

[∇u]c = [∇û]c + [∇ε]c. (B.17)

Because the function̂u(x, y) is a quadratic function, the relation of [∇û]c = [∇û]t (G) is
satisfied. This leads to the error owing to the estimation:

[∇u]c − [∇u]t (r) = [∇ε]c − [∇ε]t (r)− J(r −G). (B.18)

Since the leading terms ofε is cubic polynomials, the first term on the right-hand side has
the magnitude of order of1d2, where1d denotes the reference length, such as

√
A. The

second term also has the magnitude of order of1d2, because components of [∇ε]t (r) itself
contain quadratic polynomials. The third term, however, does not vanish in the second-order
sense, because|r −G| ∼ O(1d). It is obvious that this term should be zero only ifr = G.
Thus, we can conclude that for the gradient operator the relocation of the grid point to the
gravitational center of control volume provides the increase of accuracy. Also, as for the
divergence operator and the curl operator, we can show by the similar way that the same is
true.
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TABLE III

Comparison of the Ratios of the Maximum Grid Interval to the Minimum

Grid Interval among the Grid Systems in This Study

glevel STD-grid STD-GC-grid SPR-GC-grid SPR-NL-GC-grid

3 1.311 1.311 1.508 1.235
4 1.331 1.331 1.663 1.256
5 1.336 1.336 1.824 1.272
6 1.337 1.337 1.990 1.285
7 1.337 1.337 2.156 1.295

APPENDIX C

In the text, we show the advantage of using the SPR-GC-grid both for the numerical
accuracy and for the numerical stability. However, the grid modification causes a trivial
problem concerning the homogeneity of grid. Table III shows the ratios of maximum grid
interval to minimum grid interval for the STD-grid, the STD-GC-grid, and the SPR-GC-
grid. The local grid interval is estimated by the square root of the area of control volume.
The values of the STD-grid and the STD-GC-grid are the same because of the same control
volumes. They are converging to the value of 1.337 as the increment of glevel, so the
homogeneity of the grid can be maintained. On the other hand, the value of the SPR-GC-
grid gradually increases as the increment of glevel, though its increase is small. We can
remedy this defect by replacing the linear spring formula in Eq. (20) by an appropriate
nonlinear spring formula. For example, instead ofd̄ in Eq. (20), we can formulate the
length of spring as

d̄i = 1

2
d̄

(
Ā

A0
+ Ā

Ai

)
, (C.1)

where Ā denotes the global average of area of control volume andAi denotes the area at
point Pi . Such an inclusion of feedback of area in dynamics makes the grid homogeneous.
We call this grid system the SPR-NL-GC-grid. The ratios of maximum grid interval to min-
imum grid interval atβ = 0.8, are shown in Table III, where the SPR-NL-GC-grid is more
homogeneous than the STD-grid and the STD-GC-grid. Of course, since the geometrical
quantities are relatively monotonic also in the SPR-NL-GC-grid, the noise-reduction can
be expected.
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